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1 Introduction

Tapered versions of the classical Dirichlet’s and Fejér’s kernels are defined. The
expressions as trigonometric series make some properties trivial. For some others to
be obtained, coefficients capturing the taper are used. The majority of the properties
provided have a descriptive character. The most important, from a theoretical point
of view, are:

• Item 6 of Lemma 1

• Item 7 of Lemma 3

• Item 8 of Lemma 3
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• Item 11 of Lemma 3

• Item 11 of Lemma 4

• Item 13 of Lemma 4

2 Definitions

Definition 1 (Dahlhaus, 1997) For a complex-valued function f ,

HN(f(·), λ) :=
N−1∑
s=0

f(s)e−iλs, (1)

and, for the data taper h(x),

Hk,N(λ) := HN

(
h
( ·
N

)k
, λ

)
(2)

and
HN(λ) = H1,N(λ). (3)

Definition 2 (Dahlhaus, 1997) For the data taper h(x),

Hk :=

∫ 1

0

h(u)kdu. (4)

Remark
1

N

N−1∑
r=0

h
( r
N

)k
=

1

N
Hk,N(0) −→ Hk. (5)

3 Classical versions

The classical Dirichlet’s and Fejér’s kernels are, for M ∈ N, respectively,

Definition 3

DM(µ) :=
1

2π

+M∑
n=−M

e−iµn, (6)

and

Definition 4

FM(µ) :=
1

M
[D0(µ) +D1(µ) + · · ·+DM−1(µ)] =

1

M

M−1∑
m=0

Dm(µ). (7)
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Some other expressions of these kernels are

DM(µ) =
1

2π

[
1 + 2

M∑
n=1

cos(µn)

]
, (8)

DM(µ) =
1

2π

sin[(M + 1/2)µ]

sin[µ/2]
, (9)

and

FM(µ) =
1

2π

+(M−1)∑
n=−(M−1)

(
1− |n|

M

)
e−iµn, (10)

FM(µ) =
1

2π

[
1 + 2

M−1∑
n=1

(
1− n

M

)
cos(µn)

]
, (11)

FM(µ) =
1

2πM

(
sin[Mµ/2]

sin[µ/2]

)2

. (12)

4 Taper coefficients

In this section coefficients describing the taper are defined and some of its properties
obtained.

4.1 Definition

It can be written

|Hk,N(µ)|2 = Hk,N(µ)Hk,N(µ) =
N−1∑
r=0

N−1∑
s=0

h
(
r
N

)k
h
(
s
N

)k
e−iµ(r−s)

=

+(N−1)∑
n=−(N−1)

e−iµn
∑

{r−s=n}

h
(
r
N

)k
h
(
s
N

)k
=

+(N−1)∑
n=−(N−1)

cn,k,Ne
−iµn (13)

where

Definition 5
cn,k,N :=

∑
{r−s=n}

h
(
r
N

)k
h
(
s
N

)k
, (14)

for n = 0,+1,−1, . . . ,+(N − 1),−(N − 1).
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By applying again the same idea,

|Hk,N(µ)|4 =

+(N−1)∑
n1=−(N−1)

cn1,k,Ne
−iµn1

+(N−1)∑
n2=−(N−1)

cn2,k,Ne
−iµn2

=

+(N−1)∑
n1=−(N−1)

+(N−1)∑
n2=−(N−1)

cn1,k,Ncn2,k,Ne
−iµ(n1+n2)

=

+2(N−1)∑
n=−2(N−1)

dn,k,Ne
−iµn (15)

where

Definition 6
dn,k,N :=

∑
{n1+n2=n}

cn1,k,Ncn2,k,N , (16)

for n = 0,+1,−1, . . . ,+2(N − 1),−2(N − 1).

4.2 Properties

Lemma 1

1. From the symmetry of the expression,

cn,k,N = c−n,k,N

2. By definition,
c0,k,N = H2k,N(0)

3. From (13) and Hk,N(0) ∈ R,

Hk,N(0)2 =

+(N−1)∑
n=−(N−1)

cn,k,N

4. From 2,

Hk,N(0)2 = c0,k,N + 2
N−1∑
n=1

cn,k,N

5. From (13) and 2,

|Hk,N(µ)|2 = c0,k,N + 2
N−1∑
n=1

cn,k,Ncos(µn)
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6. For any n,

(N−|n|)−1cn,k,N = 1
N−|n|

∑
{r−s=n}

h
(
r
N

)k
h
(
s
N

)k
= 1

N−|n|

N−1∑
r=n

h
(
r
N

)k
h
(
r−n
N

)k
= 1

N−|n|

N−1∑
r=n

h
(
r
N

)k
h
(
r
N
− n

N

)k
(17)

Thus, if h(·) is continuous,

(N−|n|)−1cn,k,N −→ H2k (18)

when N → +∞.

7. From the orthogonality of the trigonometric system,∫ +π

−π
|Hk,N(µ)|2eiµndµ = 2πcn,k,N

so

cn,k,N =
1

2π

∫ +π

−π
|Hk,N(µ)|2eiµndµ. (19)

8. The previous expression provides

|cn,k,N | ≤ c0,k,N (20)

9. When there is no taper
cn,k,N = N − |n| (21)

Lemma 2

1. From the symmetry of the expression,

dn,k,N = d−n,k,N

2. From the definition and 1 of Lemma 1,

d0,k,N =

+(N−1)∑
n=−(N−1)

cn,k,Nc−n,k,N =

+(N−1)∑
n=−(N−1)

c2n,k,N .

3. From (15) and Hk,N(0) ∈ R,

Hk,N(0)4 =

+2(N−1)∑
n=−2(N−1)

dn,k,N (22)
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4. From the orthogonality of the trigonometric system,∫ +π

−π
|Hk,N(µ)|4eiµndµ = 2πdn,k,N

so

dn,k,N =
1

2π

∫ +π

−π
|Hk,N(µ)|4eiµndµ. (23)

Remark. The coefficients cn,k,N previously defined are important to understand the
behaviour of the tapered kernels that we define. It is easy to extract some qualitative
information from the definitions. By hypothesis limu→0h(u) = 0 and limu→1h(u) = 0;

then, for N and n big enough the terms h
(
r
N

)
h
(
s
N

)
—in

∑
{r−s=n} h

(
r
N

)k
h
(
s
N

)k
and

∑
{r−s=n}(r− s)lh

(
r
N

)k
h
(
s
N

)k
— tend to zero. At the same time the exponent k

contributes to accelerate the convergence.

5 The tapered Dirichlet kernel

5.1 Definition

For N ∈ N+ and M = 0,+1, . . . ,+(N − 1) the tapered Dirichlet kernel is defined as

Definition 7

LM,k,N(µ) :=
1

2πN−1
PN−1
r=0 h( r

N )
2k

+M∑
m=−M

(N−|m|)−1

∑
{r−s=n}

h( r
N )

k
h( s

N )
ke−iµm (24)

or

LM,k,N(µ) :=
1

2π

+M∑
m=−M

(N−|m|)−1
P
{r−s=n} h( r

N )
k
h( s

N )
k

N−1
PN−1
r=0 h( r

N )
2k e−iµm (25)

The name of this kernel is based on the fact that LM,k,N(µ) is equal to the classical
Dirichlet kernel when there is no taper, that is, for h(x) = I{[0, 1]} with I{} being

the characteristic function. As in this case cn,k,N = N − |n|, then
(N−|m|)−1cm,k,N

N−1c0,k,N
= 1

and the dependence on N , the parameter of the taper, disappears:

LM,k,N(µ) = DM(µ) (26)

In fact {LM,k,N(µ)}M,N can be seen as a triangular array of functions; with the
formal assumption that h(0) 6= 0, the first element is L0,k,1(µ) = 1

2π
. The parame-

ter N is related with the taper, while M is related with the kernel structure itself.
Asymptotically it is not a strong restriction for N to be bigger than M . When there
is no taper the triangular array {LM,k,N(µ)}M,N collapses into the classical sequence
{DM(µ)}M .

In terms of the taper coefficients, this kernel can be written as

LM,k,N(µ) =
1

2π

+M∑
m=−M

(N−|m|)−1cm,k,N
N−1c0,k,N

e−iµm (27)
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or

LM,k,N(µ) =
1

2π

[
1 + 2

M∑
m=1

(N−m)−1cm,k,N
N−1c0,k,N

cos(µm)

]
. (28)

5.2 Properties

Lemma 3

1. LM,k,N(µ) is continuous on µ

2. LM,k,N(µ) is even, since LM,k,N(µ) = LM,k,N(−µ)

3. LM,k,N(µ) ∈ R, since LM,k,N(µ) = LM,k,N(µ) = LM,k,N(−µ)

4. LM,k,N(µ) is 2π-periodic, since so the exponential function is

5. limµ→0LM,k,N(µ) = 1
2π

∑+M
m=−M

(N−|m|)−1cm,k,N
N−1c0,k,N

= LM,k,N(0), since LM,k,N(µ) is

continuous on µ

6. For any M , from (18) it holds that

limN→+∞LM,k,N(0) =
1

2π

+M∑
m=−M

1 =
1

2π
(2M + 1)

7. More generally, for any M , from (27) and (18), it holds that

limN→+∞LM,k,N(µ) =
1

2π

+M∑
m=−M

e−iµm = DM(µ).

That is, LM,k,N(µ) is asymptotically as close to DM as desired.

8. From the previous property,

limM→+∞LM,k,N(µ) = limM→+∞DM(µ) = δ(0)

(notice that by definition it is necessary for N to be bigger than M)

9. It holds that LM,k,N(µ) ≤ LM,k,N(0) when i) h(·) is non-negative or non-positive,
or ii) k is even. In these cases supµLM,k,N(µ) = LM,k,N(0)
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10. From 23 below,

LM,k,N(µ) =
1

2π

+M∑
m=−M

∫ +π

−π
LM,k,N(γ)eiγmdγe−iµm

=
1

2π

∫ +π

−π
LM,k,N(γ)

∑+M
m=−M ei(γ−µ)mdγ

=
1

2π

∫ +π

−π
LM,k,N(γ)2πDM(µ− γ)dγ

=

∫ +π

−π
LM,k,N(γ)DM(µ− γ)dγ

= (DM ∗ LM,k,N)(µ). (29)

Since in these steps the continuity or derivability of h(·) have not been used, as
a particular case DM(µ) = (DM ∗DM)(µ).

11. From 1, 6 and 18 below it seems that LM,k,N(µ) −→ δ(0) when N → +∞, where
δ(·) is the Dirac’s delta function. To prove this important result, item 8 could
be called, but a direct argument is the following:

LM,k,N(µ) =
1

2π

+M∑
n=−M

(N−|n|)−1cn,k,N
N−1c0,k,N

e−iµn

−→ 1

2π

+∞∑
n=−∞

e−iµn = δ(0)

when M → +∞ (notice that, by definition, N is bigger than M). From (18),
(N−|n|)−1cn,k,N

N−1c0,k,N
−→ 1

12. LM,k,N(µ) is derivable and

L
l)
M,k,N(µ) =

1

2πN−1
PN−1
r=0 h( r

N )
2k

+M∑
m=−M

(N−|m|)−1

∑
{r−s=m}

h( r
N )

k
h( s

N )
k(−im)le−iµm

=
1

2πN−1
PN−1
r=0 h( r

N )
2k

+M∑
m=−M

(−im)l(N−|m|)−1

∑
{r−s=m}

h( r
N )

k
h( s

N )
ke−iµm

=
1

2πN−1c0,k,N

+M∑
m=−M

(−im)l(N − |m|)−1cm,k,Ne−iµm

=
1

2π

+M∑
m=−M

(−im)l
(N−|m|)−1cm,k,N

N−1c0,k,N
e−iµm (30)

L
l)
M,k,N is a continuous, even and 2π-periodic function on µ. Besides, L

l)
M,k,N(µ) ∈

R since from the symmetry of the expression L
l)
M,k,N(µ) = L

l)
M,k,N(µ).
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On the other hand, LM,k,N(µ) is an analytic function, as it is a finite sum of
analytic functions

13. As a rough bound, when i) h(·) is non-negative or non-positive, or ii) k is even,

|Ll)M,k,N(µ)| ≤M lLM,k,N(0)

14. For l odd, L
l)
M,k,N(0) = 0 from the symmetry of the expression

15. For l even, when i) h(·) is non-negative or non-positive, or ii) k is even, it holds

that L
l)
M,k,N(0) ≤ 0 if il < 0, and L

l)
M,k,N(0) ≥ 0 if il > 0

16. With usual taper functions L′′M,k,N(0) 6= 0; that is, LM,k,N(µ) is not lineal in
µ = 0 or, geometrically, the curvature of the graph is not null in µ = 0. With
this taper functions L′′M,k,N(0) < 0 and LM,k,N(µ) has a maximum in µ = 0 when
i) h(·) is non-negative or non-positive or ii) k is even (see the previous property)

17. With (30) and some computes,

L
l)
M,k,N(µ) = (DM ∗ Ll)M,k,N)(µ) (31)

18. It holds that ∫ +π

−π
LM,k,N(µ)dµ = 1.

Expression (24) highlights which the normalization factor is.

19. From 2 and 18, ∫ 0

−π
LM,k,N(µ)dµ =

1

2
=

∫ +π

0

LM,k,N(µ)dµ

20. (Incomplete) Let {aN} be a sequence of positive real numbers such that aN →
0; since

1 =

∫ +π

−π
LM,k,N(µ)dµ =

∫
|µ|≤aN

LM,k,N(µ)dµ+

∫
|µ|>aN

LM,k,N(µ)dµ

when the second integral tends to zero, as aN → 0, for any a > 0 there exists
N0 such that aN ≤ a when N > N0, and in this case∫

|µ|>a
LM,k,N(µ)dµ ≤

∫
|µ|>aN

LM,k,N(µ)dµ→ 0.

Then, to prove the asymptotic negligibility of the tails it is enough to find a
sequence {aN} such that the first integral of the right hand tends to 1. Since
odd derivatives of LM,k,N in µ = 0 are null,

LM,k,N(µ) = LM,k,N(0) +
1

2
L′′M,k,N(µ0)µ

2 with µ0 ∈ (0, µ)
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then ∫
|µ|≤aN

LM,k,N(µ)dµ = 2aNLM,k,N(0) +
1

2
L′′M,k,N(µ0)

∫
|µ|≤aN

µ2dµ

= 2aNLM,k,N(0) +
1

3
L′′M,k,N(µ0)a

3
N .

If aN = (2LM,k,N(0))−1,

1

3
L′′M,k,N(0)a3

N = C
L′′M,k,N(0)

LM,k,N(0)3

so it seems it is necessary a better bound than 13 for L′′M,k,N(0)...

21. As for the classical Dirichlet’s kernel, the tapered Lebesgue constants could be
defined and studied: ‖ LM,k,N ‖1

22. LM,k,N ∈ Lp[−π,+π], although perhaps ‖ LM,k,N ‖p−→ +∞ with M

23. From (27),

cn,k,N =
N−1

(N − |n|)−1
c0,k,N

∫ +π

−π
LM,k,N(γ)eiγndγ

=

(
1− |n|

N

)
c0,k,N

∫ +π

−π
LM,k,N(γ)eiγndγ (32)

24. Also from (27),∫ +π

−π
LM,k,N(µ)2dµ =

1

2π

+M∑
m=−M

(
(N−|m|)−1cm,k,N

N−1c0,k,N

)2

25. From (30), ∫ +π

−π
L
l)
M,k,N(µ)dµ = 0. (33)

This expresses the symmetry of LM,k,N

26. As LM,k,N ∈ L1[−π,+π], the Fourier coefficients can be considered; for m ∈ Z,

L̂M,k,N(m) :=
1

2π

∫ +π

−π
LM,k,N(µ)e−iµmdµ

=


1
2π

(N−|m|)−1cm,k,N
N−1c0,k,N

if m ≤ N − 1

0 if m > N − 1

(34)

Then,

(27) ≡ LM,k,N(µ) =

+M)∑
m=−M

L̂M,k,N(m)e−iµm =
∑
m∈Z

L̂M,k,N(m)e−iµm (35)
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and

(24) ≡
∫ +π

−π
LM,k,N(µ)2dµ = 2π

+M∑
m=−M)

L̂M,k,N(m)2 = 2π
∑
m∈Z

L̂M,k,N(m)2 (36)

That is, the Fourier series expression and the Parseval’s equality had been found.
Notice that ∣∣∣L̂M,k,N(m)

∣∣∣ ≤ 1

2π

∫ +π

−π
LM,k,N(µ)dµ =

1

2π
, (37)

so from (34)

|cm,k,N | ≤
(

1− |m|
N

)
c0,k,N ∀m ∈ Z.

On the other hand, the Fourier partial sums, in general, are

(SMf)(µ) :=
+M∑

m=−M

f̂(m)e−iµm =

∫ +π

−π
f(γ)DM(µ− γ)dγ (38)

which for the tapered Dirichlet kernel, with M = N − 1, provides

(SMLM,k,N)(µ) =

∫ +π

−π
LM,k,N(γ)DM(µ− γ)dγ = LM,k,N(µ) (39)

as steps (29) states
For the derivatives, directly from (35),

L
l)
M,k,N(µ) =

+M∑
m=−M

(−im)lL̂M,k,N(m)e−iµm =
∑
m∈Z

(−im)lL̂M,k,N(m)e−iµm (40)

or, from (30) and (34),

L
l)
M,k,N(µ) =

1

2π

+M∑
m=−M

(−i)lnl (N − |m|)
−1cn,k,N

N−1c0,k,N
e−iµm

=
+M∑

m=−M

(−in)lL̂M,k,N(n)e−iµm. (41)

To see directly that LM,k,N(µ) is an analytic function (there is another justifi-
cation in 12) for µ close to µ0

LM,k,N(µ) =
+M∑

m=−M

L̂M,k,N(m)e−iµm

=
+M∑

m=−M

L̂M,k,N(m)e−iµ0me−i(µ−µ0)m

=
+M∑

m=−M

L̂M,k,N(m)e−iµ0m

∞∑
l=0

(−im)l

l!
(µ− µ0)

l

=
∞∑
l=0

1

l!

+M∑
m=−M

(−im)lL̂M,k,N(m)e−iµ0m(µ− µ0)
l

=
∞∑
l=0

L
l)
M,k,N(µ0)

l!
(µ− µ0)

l
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6 The tapered Fejér kernel

6.1 Definition

The tapered Fejér kernel is defined, for N ∈ N+, as

Definition 8

Kk,N(µ) :=
1

2πPN−1
r=0 h( r

N )
2k

N−1∑
r=0

N−1∑
s=0

h
(
r
N

)k
h
(
s
N

)k
e−iµ(r−s) (42)

or

Kk,N(µ) :=
1

2πH2k,N(0)
Hk,N(µ)Hk,N(µ) =

1

2πH2k,N(0)
|Hk,N(µ)|2. (43)

The name of the kernel is based on the fact that Kk,N(µ) is equal to the classical
Fejér kernel when there is no taper, that is, when h(x) = I{[0, 1]} with I{} being the
characteristic function. Since in the double sum

∑N−1
r=0

∑N−1
s=0 there are N terms with

r− s = 0, N − 1 terms with r− s = 1 and N − 1 with r− s = −1, N − 2 terms with
r − s = 2 and N − 2 with r − s = −2, ..., and 1 terms with r − s = +(N − 1) and 1
with r − s = −(N − 1), it can be written

N−1∑
r=0

N−1∑
s=0

e−iµ(r−s) =

+(N−1)∑
n=−(N−1)

e−iµn +

+(N−2)∑
n=−(N−2)

e−iµn + · · ·+
+1∑

n=−1

e−iµn + 1

= 2πDN−1(µ) + 2πDN−2(µ) + · · ·+ 2πD1(µ) + 2πD0(µ) = 2πNFN(µ), (44)

where DN(·) and FN(·) are, respectively, the classical Dirichlet’s and Fejér’s kernels.

Then, in this particular case Kk,N(µ) = 1
2πN

2πNFN(µ) = FN(µ).
In terms of the taper coefficients, this kernel can be written as

Kk,N(µ) =
1

2πc0,k,N

+(N−1)∑
n=−(N−1)

cn,k,Ne
−iµn

=
1

2π

+(N−1)∑
n=−(N−1)

cn,k,N
c0,k,N

e−iµn (45)

=
1

2π

+(N−1)∑
n=−(N−1)

(N−|n|)−1cn,k,N
N−1c0,k,N

(
1− |n|

N

)
e−iµn (46)

or

Kk,N(µ) =
1

2πH2k,N(0)

[
c0,k,N + 2

N−1∑
n=1

cn,k,Ncos(µn)

]

=
1

2π

[
1 + 2

N−1∑
n=1

cn,k,N
c0,k,N

cos(µn)

]

=
1

2π

[
1 + 2

N−1∑
n=1

(N−n)−1cn,k,N
N−1c0,k,N

(
1− n

N

)
cos(µn)

]
. (47)
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6.2 Properties

Lemma 4

1. Kk,N(µ) is continuous on µ

2. Kk,N(µ) is even, since from the symmetry of its expression KN(µ) = KN(−µ)

3. Kk,N(µ) ∈ R by definition. Besides, Kk,N(µ) = Kk,N(µ) = Kk,N(−µ)

4. Kk,N(µ) ≥ 0 by definition

5. Kk,N(µ) is 2π-periodic, since so the exponential function is

6. limµ→0Kk,N(µ) = 1
2πH2k,N (0)

Hk,N(0)Hk,N(0) =
Hk,N (0)2

2πH2k,N (0)
= Kk,N(0), since Hk,N(µ)

is continuous on µ

7. As N−1Hk,N(0) −→ Hk when N → +∞,

Kk,N(0) =
Hk,N(0)2

2πH2k,N(0)
= N

N−2Hk,N(0)2

2πN−1H2k,N(0)
−→ +∞

when N → +∞. Besides, Kk,N(0) ∝ N for large values of N .

8. It holds that Kk,N(µ) ≤ Kk,N(0) when i) h(·) is non-negative or non-positive,
or ii) k is even, since |Hk,N(µ)| ≤ |Hk,N(0)|. In these cases supµKk,N(µ) =
Kk,N(0)

9. From the Cauchy-Schwarz’s inequality, when i) h(·) is non-negative or non-
positive, or ii) k is even,

Kk,N(µ) =
1

2πH2k,N(0)

∣∣∣∣∣
N−1∑
r=0

h
(
r
N

)k
e−iµr

∣∣∣∣∣
2

≤ 1

2πH2k,N(0)
NH2k,N(0) =

N

2π
.

This result can also be obtained from 8 and 7, since the mentioned inequality
implies —under i) or ii)— that Hk,N(0)2 ≤ NH2k,N(0). (On the other hand
H2
k ≤ H2k by Jensen’s inequality.)

10. From the definition and (15),

Kk,N(µ)2 =
1

[2πH2k,N(0)]2

+2(N−1)∑
n=−2(N−1)

dn,k,Ne
−iµn

=
1

(2π)2

+2(N−1)∑
n=−2(N−1)

dn,k,N
c20,k,N

e−iµn. (48)
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11. From (46) and (18), Kk,N is asymptotically as close to FN as desired. In fact,
both of them tend to the Dirac’s delta function.

12. From 7 of Lemma 1

Kk,N(µ) =
1

2π

+(N−1)∑
n=−(N−1)

cn,k,N
c0,k,N

e−iµn

=
1

2π

+(N−1)∑
n=−(N−1)

∫ +π

−π
Kk,N(γ)eiγndγe−iµn

=
1

2π

∫ +π

−π
Kk,N(γ)

∑+(N−1)
n=−(N−1) e

i(γ−µ)ndγ

=
1

2π

∫ +π

−π
Kk,N(γ)2πDN−1(µ− γ)dγ

=

∫ +π

−π
Kk,N(γ)DN−1(µ− γ)dγ

= (DN−1 ∗Kk,N)(µ). (49)

Since in these steps the continuity or derivability of h(·) have not been used, as
a particular case FN(µ) = (DN−1 ∗ FN)(µ).

13. From 1, 7 and 20 below it seems that Kk,N(µ) −→ δ(0) when N → +∞, where
δ(·) is the Dirac’s delta function. To prove this important result, item 11 could
be called, but a direct argument is the following:

Kk,N(µ) =
1

2π

+(N−1)∑
n=−(N−1)

(N−|n|)−1cn,k,N
N−1c0,k,N

(
1− |n|

N

)
e−iµn

−→ 1

2π

+∞∑
n=−∞

e−iµn = δ(0)

when N → +∞. On the one hand,
(N−|n|)−1cn,k,N

N−1c0,k,N
−→ 1 (see 6 of Lemma 1);

on the other hand, 1− |n|/N −→ 1 for any n (a similar argument is used, for
example, by Priestley [1981] in Theorem 4.8.1 and in section 5.3.2.)

14. Kk,N(µ) is derivable and

K
l)
k,N(µ) =

1

2πH2k,N(0)

N−1∑
r=0

N−1∑
s=0

[−i(r − s)]lh
(
r
N

)k
h
(
s
N

)k
e−iµ(r−s)

=
1

2π

+(N−1)∑
n=−(N−1)

(−i)lnl cn,k,N
c0,k,N

e−iµn. (50)
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K
l)
k,N is a continuous, even and 2π-periodic function on µ. Besides, K

l)
k,N(µ) ∈ R

since from the symmetry of the expression K
l)
k,N(µ) = K

l)
k,N(µ).

On the other hand, Kk,N(µ) is an analytic function, as it is a finite sum of
analytic functions

15. As a rough bound, when i) h(·) is non-negative or non-positive, or ii) k is even,

|K l)
k,N(µ)| ≤ (N − 1)lKk,N(0) < N lKk,N(0)

16. For l odd, K
l)
k,N(0) = 0 from the symmetry of the expression

17. For l even, when i) h(·) is non-negative or non-positive, or ii) k is even, it holds

that K
l)
k,N(0) ≤ 0 if il < 0, and K

l)
k,N(0) ≥ 0 if il > 0

18. With usual taper functions K ′′k,N(0) 6= 0; that is, Kk,N(µ) is not lineal in µ = 0
or, geometrically, the curvature of the graph is not null in µ = 0. With this
taper functions K ′′k,N(0) < 0 and Kk,N(µ) has a maximum in µ = 0 when i) h(·)
is non-negative or non-positive or ii) k is even (see the previous property)

19. With (50) and some computes,

K
l)
k,N(µ) = (DN−1 ∗K l)

k,N)(µ) (51)

20. It holds that∫ +π

−π
Kk,N(µ)dµ =

1

2πH2k,N(0)

N−1∑
r=0

N−1∑
s=0

h
(
r
N

)k
h
(
s
N

)k ∫ +π

−π
e−iµ(r−s)dµ

=
1

2πH2k,N(0)

N−1∑
r=0

h
(
r
N

)2k
2π = 1

Expression (42) highlights which the normalization factor is.

21. From 2 and 20, ∫ 0

−π
Kk,N(µ)dµ =

1

2
=

∫ +π

0

Kk,N(µ)dµ

22. (Incomplete) Let {aN} be a sequence of positive real numbers such that aN →
0; since

1 =

∫ +π

−π
Kk,N(µ)dµ =

∫
|µ|≤aN

Kk,N(µ)dµ+

∫
|µ|>aN

Kk,N(µ)dµ

when the second integral tends to zero, as aN → 0, for any a > 0 there exists
N0 such that aN ≤ a when N > N0, and in this case∫

|µ|>a
Kk,N(µ)dµ ≤

∫
|µ|>aN

Kk,N(µ)dµ→ 0.
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Then, to prove the asymptotic negligibility of the tails it is enough to find a
sequence {aN} such that the first integral of the right hand tends to 1. Since
odd derivatives of Kk,N in µ = 0 are null,

Kk,N(µ) = Kk,N(0) +
1

2
K ′′k,N(µ0)µ

2 with µ0 ∈ (0, µ)

then ∫
|µ|≤aN

Kk,N(µ)dµ = 2aNKk,N(0) +
1

2
K ′′k,N(µ0)

∫
|µ|≤aN

µ2dµ

= 2aNKk,N(0) +
1

3
K ′′k,N(µ0)a

3
N .

If aN = (2Kk,N(0))−1,

1

3
K ′′k,N(0)a3

N = C
K ′′k,N(0)

Kk,N(0)3

so it seems it is necessary a better bound than 15 for K ′′k,N(0)...

23. Kk,N ∈ Lp[−π,+π], although perhaps ‖ Kk,N ‖p−→ +∞ with N

24. From (45), or directly from 7 of Lemma 1,

cn,k,N = c0,k,N

∫ +π

−π
Kk,N(γ)eiγndγ (52)

25. From (48),∫ +π

−π
Kk,N(µ)2dµ =

1

(2π)2

∫ +π

−π

+2(N−1)∑
n=−2(N−1)

dn,k,N
c20,k,N

e−iµndµ

=
1

(2π)2

d0,k,N

c20,k,N
2π

=
1

2π

+(N−1)∑
n=−(N−1)

(
cn,k,N
c0,k,N

)2

. (53)

This result can also be obtained directly from (45)

26. From (50), ∫ +π

−π
K
l)
k,N(µ)dµ = 0. (54)

This expresses the symmetry of Kk,N .

27. (Incomplete) It holds that, for j and l fixed,∫ +π

−π
Kk,N(µ)eiµ(tj−tl)dµ =

1

2πc0,k,N

∫ +π

−π

∑+(N−1)
n=−(N−1)cn,k,Ne

−iµneiµ(tj−tl)dµ

=
1

2πc0,k,N
2πctj−tl,k,N =

ctj−tl,k,N

c0,k,N
I{|tj − tl| < N},
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where I{} is the characteristic function. That is, only close points provide a
value different from zero for the previous integral. In this item the notation tj,
tl, S, N ... is the used in Casado (????).
Now, for j fixed it can be defined the influence interval of point tj as

Ij := {tl / |tj − tl| = |S(j − l)| < N} (55)

and it holds that

Ij =


{tl / |N(j − l)| < N} = {tl / tl = tj} if S = N

{tl / |S(j − l)| < N} = {tl / |j − l| < N/S} if S/N → 0

In Ij there are only one point when S = N and 2N/S points when S/N → 0
(notice that in this case N/S → ∞). There is a subtle difference between Ij
defined in (55) and Bj defined in Casado (????): the length is given by defini-
tion for the former and imposed by orthogonality properties of the trigonometric
functions in the latter. Now, the sum on l is

M∑
l=1

∫ +π

−π
Kk,N(µ)eiµ(tj−tl)dµ =

M∑
l=1

ctj−tl,k,N

c0,k,N
I{tl ∈ Ij}.

=


c0,k,N
c0,k,N

= 1 if S = N

PM
l=1 ctj−tl,k,NI{tl ∈ Ij}

c0,k,N
if S/N → 0

(56)

−→


1 if S = N

... if S/N → 0
(57)

28. As Kk,N ∈ L1[−π,+π], the Fourier coefficients can be considered; for m ∈ Z,

K̂k,N(m) :=
1

2π

∫ +π

−π
Kk,N(µ)e−iµmdµ =


1
2π

cm,k,N
c0,k,N

if m ≤ N − 1

0 if m > N − 1

(58)

Then,

(45) ≡ Kk,N(µ) =

+(N−1)∑
m=−(N−1)

K̂k,N(m)e−iµm =
∑
m∈Z

K̂k,N(m)e−iµm (59)

and

(53) ≡
∫ +π

−π
Kk,N(µ)2dµ = 2π

+(N−1)∑
m=−(N−1)

K̂k,N(m)2 = 2π
∑
m∈Z

K̂k,N(m)2 (60)

That is, the Fourier series expression and the Parseval’s equality had been found.
Notice that ∣∣∣K̂k,N(m)

∣∣∣ ≤ 1

2π

∫ +π

−π
Kk,N(µ)dµ =

1

2π
, (61)
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so from (58)
|cm,k,N | ≤ c0,k,N ∀m ∈ Z

This result was also obtained directy from (19). On the other hand, the Fourier
partial sums, in general, are

(SMf)(µ) :=
+M∑

m=−M

f̂(m)e−iµm =

∫ +π

−π
f(γ)DM(µ− γ)dγ (62)

which for the tapered Fejér kernel, with M = N − 1, provides

(SN−1Kk,N)(µ) =

∫ +π

−π
Kk,N(γ)DN−1(µ− γ)dγ = Kk,N(µ) (63)

as steps (49) states.
For the derivatives, directly from (59),

K
l)
k,N(µ) =

+(N−1)∑
m=−(N−1)

(−im)lK̂k,N(m)e−iµm =
∑
m∈Z

(−im)lK̂k,N(m)e−iµm (64)

or, from (50) and (58),

K
l)
k,N(µ) =

1

2π

+(N−1)∑
n=−(N−1)

(−i)lnlcn,k,N
c0,k,N

e−iµn

=

+(N−1)∑
n=−(N−1)

(−in)lK̂k,N(n)e−iµn. (65)

To see directly that Kk,N(µ) is an analytic function (there is another justification
in 14), for µ close to µ0

Kk,N(µ) =

+(N−1)∑
m=−(N−1)

K̂k,N(m)e−iµm

=

+(N−1)∑
m=−(N−1)

K̂k,N(m)e−iµ0me−i(µ−µ0)m

=

+(N−1)∑
m=−(N−1)

K̂k,N(m)e−iµ0m

∞∑
l=0

(−im)l

l!
(µ− µ0)

l

=
∞∑
l=0

1

l!

+(N−1)∑
m=−(N−1)

(−im)lK̂k,N(m)e−iµ0m(µ− µ0)
l

=
∞∑
l=0

K
l)
k,N(µ0)

l!
(µ− µ0)

l
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7 Relation between the kernels

Since {LM,k,N(µ)}M,N is a triangular array of functions, sums in several directions
can be studied. The results of these sums have been represented in Figure (1).

An important general relation between the tapered Dirichlet and Fejér kernels is
that the latter can be expressed as a Cesàro-like sum from the former. For the N -th
row, with the same idea used to obtain (44), or using that for a general sequence of

numbers
∑N−1

i=0

∑+i
j=−i aj =

∑+(N−1)
j=−(N−1)(N − |j|)aj, it can be written

1

N

N−1∑
m=0

Lm,k,N(µ) =
1

N

N−1∑
M=0

1

2π

+M∑
m=−M

(N−|m|)−1cm,k,N
N−1c0,k,N

e−iµm

=
1

2π

N−1∑
M=0

+M∑
m=−M

(N−|m|)−1cm,k,N
c0,k,N

e−iµm

=
1

2π

+(N−1)∑
n=−(N−1)

(N − |n|) (N−|n|)−1cn,k,N
c0,k,N

e−iµn

=
1

2π

+(N−1)∑
n=−(N−1)

cn,k,N
c0,k,N

e−iµn

= Kk,N(µ) (66)

The previous average is not the classical Cesàro sumation, as the terms LM,k,N(µ)
depends onN . The sum onM explains why the kernelKk,N does not depend explicitly
on M , only on the taper parameter N ; nevertheless, there is an implicit relation
between M and N in the definition of the triangular array. By using the Fejér sums
notation, the previous result can be expressed as

σN−1LM,k,N = Kk,N . (67)

The sum also shows that the first element of the sequence {Kk,N}N is Kk,1 = 1
2π

(with
the formal assumption that h(0) 6= 0, as it was done for LM,k,N). Finally, results (66)
and 11 of Lemma 3 are a new proof of 13 of Lemma 4.

On the other direction, if the sum is applied to the l-th column,

1

N + 1− l

N∑
n=l

LM,k,n(µ) =
1

N + 1− l

N∑
n=l

1

2π

+M∑
m=−M

(n−|m|)−1cm,k,n
n−1c0,k,n

e−iµm

=
1

2π

+M∑
m=−M

1

N + 1− l

N∑
n=l

(n−|m|)−1cm,k,n
n−1c0,k,n

e−iµm

−→ 1

2π

+M∑
m=−M

e−iµm = DM(µ) (68)

Notice that, for the coefficients,

1

N + 1− l

N∑
n=l

(n− |m|)−1cm,k,n
n−1c0,k,n

−→ 1
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Figure 1: Triangular arrays of kernels, with and without taper, and the averages (or
its limits) in the margin

since, from (18),
(n−|m|)−1cm,k,n

n−1c0,k,n
−→ 1. Another way to justify this is to consider the

item 7 of Lemma 3 and the properties of the Cesàro sumation. As expected, when
there is no taper these coefficients take the value 1 and the limit becomes an equality.

Finally, only the diagonal of the triangular array can be taken into account (this
can be seen as a sort of synchronization of the parameters). Thus, for the sequence
{LM,k,M+1(µ)}M = {LN−1,k,N(µ)}N , from (18),

LN−1,k,N(µ) =
1

2π

+(N−1)∑
m=−(N−1)

(N−|m|)−1cm,k,N
N−1c0,k,N

e−iµm −→
+∞∑

m=−∞

e−iµm = δ. (69)

A different kind of relation can be obtained from the integral expressions (32) and
(52); for any n(

1− |n|
N

)∫ +π

−π
LM,k,N(γ)eiγndγ =

∫ +π

−π
Kk,N(γ)eiγndγ (70)

8 Summary of expressions

At this point it is interested to summarize some expressions:
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Classical Dirichlet’s kernel

DM(µ) :=
1

2π

+M∑
n=−M

e−iµn [6]

DM(µ) =
1

2π

[
1 + 2

M∑
n=1

cos(µn)

]
[8]

Classical Fejér’s kernel

FM(µ) :=
1

M

M−1∑
m=0

Dm(µ) [7]

FM(µ) =
1

2π

+(M−1)∑
n=−(M−1)

(
1− |n|

M

)
e−iµn [10]

FM(µ) =
1

2π

[
1 + 2

M−1∑
n=1

(
1− n

M

)
cos(µn)

]
[11]

Tapered Dirichlet kernel

LM,k,N(µ) =
1

2π

+M∑
n=−M

(N−|n|)−1cn,k,N
N−1c0,k,N

e−iµn [27]

LM,k,N(µ) =
1

2π

[
1 + 2

M∑
n=1

(N−n)−1cn,k,N
N−1c0,k,N

cos(µn)

]
[28]

Tapered Fejér kernel

Kk,N(µ) =
1

N

N−1∑
m=0

Lm,k,N(µ) [66]

Kk,N(µ) =
1

2π

+(N−1)∑
n=−(N−1)

(N−|n|)−1cn,k,N
N−1c0,k,N

(
1− |n|

N

)
e−iµn [46]

Kk,N(µ) =
1

2π

[
1 + 2

N−1∑
n=1

(N−n)−1cn,k,N
N−1c0,k,N

(
1− n

N

)
cos(µn)

]
[47]

That is, the tapered kernels can be expressed in the same type of sums and fulfill
the similar relations than the classical ones:
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• Compare expressions (27) and (28) with (6) and (8).

• Compare also expressions (46) and (47) with (10) and (11), respectively.

• Compare expression (66) with (7).

• Finally, compare the relation between expressions (27) and (28) with (46) and
(47), respectively, with that between expressions (6) and (8) with (10) and (11).

9 Näıve applications

Both the tapered Dirichlet and Fejér kernels are symmetrical and tend to the Dirac’s
del function when M →∞. For such kernels

1. The following point convergence holds when M → +∞

f(µ)SM(µ) −→


0 when µ 6= 0
0 when µ = 0 and f(µ) = 0
∞ when µ = 0 and f(µ) 6= 0

2. The following weak (or in distribution) convergence holds when M → +∞

∫ b
a
SM(µ)dµ −→


1 if a < 0 < b
1
2

if a = 0 or b = 0
0 if b < 0 or a > 0

3. The following weak (or in distribution) convergence holds when M → +∞

∫ b
a
f(µ)SM(µ)dµ −→


f(0) if a < 0 < b
1
2
f(0) if a = 0 or b = 0
0 if b < 0 or a > 0

4. Since∫ b

a

f(µ)SM(µ)dµ =

∫ +π

−π
f(µ)SM(µ)dµ−

∫ a

−π
f(µ)SM(µ)dµ−

∫ +π

b

f(µ)SM(µ)dµ,

the asymptotic weak (or in distribution) convergence, when M → +∞, of this
relation can be described symbolically as

f(0) = f(0)− 0− 0 if a < 0 < b
1
2
f(0) = f(0)− 1

2
f(0)− 0 if a = 0

1
2
f(0) = f(0)− 0− 1

2
f(0) if b = 0

0 = f(0)− 0− f(0) if b < 0
0 = f(0)− f(0)− 0 if a > 0
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5. If ‖ f ‖∞ exists∣∣∣∣∫ b

a

f(µ)SM(µ)dµ

∣∣∣∣ ≤
∫ b

a

|f(µ)|SM(µ)dµ

≤ ‖ f(µ) ‖∞
∫ b

a

SM(µ)dµ

−→


‖ f(µ) ‖∞ if a < 0 < b

1
2
‖ f(µ) ‖∞ if a = 0 or b = 0

0 if b < 0 or a > 0

when M → +∞.

6. The previous tapered kernels can allow for some existing proofs to be improved
in the taper framework. This could provide slightly —but crucial— better
rates of convergence. In Dahlhaus (1997) one finds an example: We conjecture
that the rate O(N−2) cannot be improved with a periodogram type estimator.
A periodogram without taper would lead to a bias of O(N−1) and therefore to√
N/N → 0 which contradicts N/

√
N → 0. Thus, without taper it is not

possible to achieve
√
T -consistency at all. It is noteworthy that the use of a

data taper does not lead to an increase of the variance if S/N → 0. The
improvement of such existing proofs would be based on the idea of introducing
the taper in the process and changing asymptotically, in the proof, the tapered
versions of the kernels by the classical ones wherever the former appear.

7. Another application takes place in the proof that has motivated these definitions
(in Casado, ????)...

8. ...
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