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1 Introduction

Tapered versions of the classical Dirichlet’s and Fejér’s kernels are defined. The
expressions as trigonometric series make some properties trivial. For some others to
be obtained, coefficients capturing the taper are used. The majority of the properties
provided have a descriptive character. The most important, from a theoretical point
of view, are:

e Item 6 of Lemma 1
e Item 7 of Lemma 3

e [tem 8 of Lemma 3



e Item 11 of Lemma 3
e Item 11 of Lemma 4

e Item 13 of Lemma 4

2 Definitions
Definition 1 (Dahlhaus, 1997) For a complex-valued function f,
N-1
Hy(f(-):2) =) fls)e™,
s=0

and, for the data taper h(zx),
and

Definition 2 (Dahlhaus, 1997) For the data taper h(z),

1
Hy ::/ h(u)*du.
0

Remark

% h(%) = %Hk,N(O) — Hy.

3 Classical versions

The classical Dirichlet’s and Fejér’s kernels are, for M € N, respectively,

Definition 3

1 —1un
Dyr(p) = 5 > e
n=—M
and
Definition 4
| M-l
Fa(p) = 57 [Do(k) + Di(p) + -+ D ()] = 57 ) Dinln)
m=0



Some other expressions of these kernels are

1
DM(N) = B

+2 Z cos(/m)] : (8)

1 sin[(M +1/2)u]

D) = 27 sinfu/2] ’ ©)
and
H(M-1)
)= > (1=l (10)
n=—(M-1)
Fu(p) = % 142 2 (1 - %) cos(/m)] ) (11)
1 (sin[Mp/2]\?
Farlp) = 27rM< sin[u/2] ) ' (12)

4 Taper coeflicients

In this section coefficients describing the taper are defined and some of its properties
obtained.

4.1 Definition

It can be written

N—1N-1
|Hk,N(/~L)|2 = Hpn(p)Hin(p) = ZZh(%)kh(%)ke—iu(T—s)
r=0 s=0
+(N-1) ' ) )
= D e hF)AE)
n=—(N-1) {r—s=n}
+(N-1)
= D Capne ™ (13)
n=—(N-1)

where

Definition 5

for n=0,+1,-1,...,+(N —=1),—(N = 1).



By applying again the same idea,

+(N-1) +(N-1)

|Hen ()|t = Z Cy e M Z

ni=—(N-1) no=—(N-1)

+(N=1)  +(N

_ —1)
ni=—(N—1) ng=—(N—1)

+2(N-1)
= Y dune
n=—2(N—1)
where
Definition 6
dmk,N = E Cny,k,NCns k,N
{ni+nz2=n}

for n=0,+1,-1,...,42(N —1),—-2(N —1).

4.2 Properties

Lemma 1
1. From the symmetry of the expression,
Cn,k,N = C—n kN
2. By definition,
cok,n = Hopn(0)
3. From (13) and Hy n(0) € R,

+(N-1)

Hk,N(0)2 = Z Cn,k,N

n=—(N-1)

4. From 2,
N-1

Cny k,NCnao k,N€

—iung
Cny k,N€ a

ip(ni+nz)

(15)

(16)

Hyn(0)* = copn +2 ) Cupy

n=1
5. From (13) and 2,

N—-1

|Hy.n (1) * = copn +2 Z Cn k. nCOS(pm)

n=1



6. For any n,

(N*\nD_lCn,k,N = len‘ Z h (%)k h (%)k

Thus, if h(-) is continuous,
(N=[n)~Cp N — Hop
when N — +4o00.

7. From the orthogonality of the trigonometric system,

+m
/ | Hin (1) [P dp = 2mcp g n

™

SO
— _1 / " | ( )|2 iun
Cp, H e L.
kN 9 . kN o d

8. The previous expression provides
lenin| < copn

9. When there is no taper
Cap,N = N — \Tl|

Lemma 2

1. From the symmetry of the expression,
dp N = dp N

2. From the definition and 1 of Lemma 1,

+(N-1) +(N-1)
do,k,N = Z Cn,k,NC—n k,N = Z
n=—(N-1) n=—(N-1)

3. From (15) and Hj x(0) € R,

+2(N-1)

Hk,N(O)4 = Z dn,k,N

n=—2(N-1)

Cn,k,N'

(17)

(18)

(20)

(21)

(22)



4. From the orthogonality of the trigonometric system,

+m
/ | Hyo o ()€ dp = 2mdly v

™

SO
Y .
duax =5 [ Hux(p)l'e™dp ea

Remark. The coefficients ¢, j y previously defined are important to understand the
behaviour of the tapered kernels that we define. It is easy to extract some qualitative
information from the definitions. By hypothesis lim,_oh(u) = 0 and lim,,_1h(u) = 0;

then, for N and n big enough the terms h (%) h (%) —in Z{Pszn} h (%)k h (%)k

and D0, (r— s)th (%)]€ h (%)k— tend to zero. At the same time the exponent k

contributes to accelerate the convergence.

5 The tapered Dirichlet kernel

5.1 Definition
For N € N" and M =0,41,...,4+(N — 1) the tapered Dirichlet kernel is defined as

Definition 7

1 —ium
Latni) = 5 oo Do bt D n(E) (R e (24)
r=0 N m=—M {r—s=n}
or
1 +M (N_lml)_lZ{r—s:n}h(%)kh(%)k —ium
Danlh) = 50 3 e )
m=— = N

The name of this kernel is based on the fact that Ly, n (1) is equal to the classical
Dirichlet kernel when there is no taper, that is, for h(z) = I{[0, 1]} with I{} being

(N=|m))"Lemp.n -1

the characteristic function. As in this case ¢, ny = N — |n|, then T

and the dependence on N, the parameter of the taper, disappears:

Largn(p) = Dar(pe) (26)

In fact {Largen(p) sy can be seen as a triangular array of functions; with the
formal assumption that h(0) # 0, the first element is Lok1(#) = 5=. The parame-
ter N is related with the taper, while M is related with the kernel structure itself.
Asymptotically it is not a strong restriction for N to be bigger than M. When there
is no taper the triangular array { Lz n (1)} n collapses into the classical sequence
{Dnr (1) -

In terms of the taper coefficients, this kernel can be written as

+M
N=Im)"'Cm kN _iim
Lyen(p) = 5= > o C . (27)



or

M
1 (N—m)~'Cp ke, N
Lyen(p) = 7 1+2 E mcos(um) . (28)
m=1 )y

5.2 Properties

Lemma 3

1. Ly n(p) is continuous on

2. Lygn(p) is even, since Ly n(pt) = Ly n(—p)

3. Ly n(p) € R, since Ly n(p) = m = LN (—p)
4. Ly n(p) is 2m-periodic, since so the exponential function is

' _ 1 M (N=m) " lempn
S limy—o Ltk N(1) = 52 2 me vt Nt

conlinuous on p

= LM,k,N(O); since LM,k,N(,u) 18

6. For any M, from (18) it holds that

1
lz’mNﬂﬂoLM’k’N(O) = — 1= —<2M + 1)

7. More generally, for any M, from (27) and (18), it holds that

1

== T = Dy ().
or g e M ()

limn 4o Lng o, n (1)

That is, Ly n(p) is asymptotically as close to Dy as desired.
8. From the previous property,
limar— 4o Lar e N (1) = limar— 10 Dpr (1) = 6(0)

(notice that by definition it is necessary for N to be bigger than M)

9. It holds that Las i n(1t) < Largn(0) when i) h(-) is non-negative or non-positive,
or i) k is even. In these cases sup,Lysn(pt) = Lk, (0)



10. From 23 below,

LM,k,N(,u) = Z / LMkN Wmdve Hpm

1

o [T QIS ey
1 7

= 5 L n(7)2m D (1o — y)dry

—+m

= /_ Lt N(7) Dar(p — v)dry

™

= (Dm * Larg,n) (1) (29)

Since in these steps the continuity or derivability of h(-) have not been used, as
a particular case Dy(p) = (D% Dar)(1).

11. From 1, 6 and 18 below it seems that Ly n (1) — 0(0) when N — +o0, where
d(+) is the Dirac’s delta function. To prove this important result, item 8 could
be called, but a direct argument is the following:

1 X vty
Luen(p) = o= e

2T N-lc
" 0,k,N
1
—_— — e " =4(0)
2T
n=—oo

when M — +oo (notice that, by definition, N is bigger than M ). From (18),
(N=|n|)"tenp,n

—
N=teq N 1

12. Largn(p) is derivable and

1 +M

D) = g oy mZMUVlmw-l{r_;m}hu)kh(;)’%—z’m)le—im
= 1 S im,)! 1 P \E, (s \E—ipm
N 2N YN a(5) mz_:M(_Zm) (N=lml) {r_g::m} n(x) h(%)e
S EE o
2TN"Co kN e mk,Ne
+M
= %m_M(—z‘m)‘—(N_Ni)%T:;”“Ne‘““” (30)

L?MN is a continuous, even and 27-periodic function on . Besides, le\)4,k,N(N) €

R since from the symmetry of the expression Lé\)M’N(,u) = Lé\)M’N(,u).

8



15.

14.

15.

16.

17.

18.

19.

20.

On the other hand, Ly n(p) is an analytic function, as it is a finite sum of
analytic functions

As a rough bound, when i) h(-) is non-negative or non-positive, or ii) k is even,

l
L3 ()] < ML n(0)

For 1 odd, Ll]\)mk’N(O) =0 from the symmetry of the expression

Forl even, when i) h(-) is non-negative or non-positive, or i) k is even, it holds
that LY, v(0) < 0 if i <0, and LY, v(0) >0 if i > 0

With usual taper functions Ly, y(0) # 0; that is, Lyxn(p) is not lineal in
=0 or, geometrically, the curvature of the graph is not null in p = 0. With
this taper functions Ly, (0) < 0 and Ly g n (1) has a mazimum in p = 0 when
i) h(-) is non-negative or non-positive or ii) k is even (see the previous property)

With (30) and some computes,
Lo (1) = (Dar * Lij ) (1) (31)

It holds that .
/ Lgen (p)dp = 1.

™

Ezpression (24) highlights which the normalization factor is.
From 2 and 18,

0 1 —+7
/ LM,k,N(,U)dM = 2 = / LM,k,N(M)dM
0

—T

(Incomplete) Let {an} be a sequence of positive real numbers such that ay —
0; since

+m
1 Z/ Laggn(p)dp Z/ LN (p)dp +/ L e n(p)dp
-7 lu|<an lul>an

when the second integral tends to zero, as ay — 0, for any a > 0 there exists
Ny such that ay < a when N > Ny, and in this case

/ Lgjen(p)dp < / Lag N (p)dp — 0.
lu[>a

lul>an

Then, to prove the asymptotic negligibility of the tails it is enough to find a
sequence {ax} such that the first integral of the right hand tends to 1. Since
odd derivatives of Ly n tn p =0 are null,

1 .
Lakn(p) = Lagg,n(0) + §L§\'4,k,N(M0)M2 with o € (0, )



21.

22.

23.

24.

25.

26.

then

1
/I < Lo (u)dp = 2an Larg,n (0) + 5 Ly g v (o) / pdp
pHisan

lnl<an

1
= 2anLyin(0) + gL,](Lk,N(/vLO)a?V‘

If ay = (2Lp e n(0)) 71,

1
gL/J\%k,N(O)a?\/ =C

L 4.n(0)
Larkn(0)?

s0 it seems it is necessary a better bound than 13 for Ly, n(0)...

As for the classical Dirichlet’s kernel, the tapered Lebesgue constants could be
defined and studied: || Ly kN |1

Ly n € Ly[—m, 4], although perhaps || Lagyn ||p— +o00 with M

From (27),
. N_l t L ( ) i'ynd
C’I’L,k‘,N - (N o |n|)_1 cO,k‘,N . M,kJ,N '7 € /y
’n’ o yn
= (1- N ) CorN L gn(v)e™dy (32)

Also from (27),

o 1 ) ey \
/ LM,k,N(,U)Qdﬂzg Z < = )

N=tCo i, N
m=—

From (50), i
| Blhrtwda=o (33

™

This expresses the symmetry of Ly g n

As Lyg.n € Ly|—m, 47|, the Fourier coefficients can be considered; for m € Z,
. 1 [t ,
LM,k,N(m) = % LM7k7N(ILL)€_led,U

-1
1 (Nflml) Sm,k,N Zf m S N _ 1

2 NﬁlcoykyN

= (34)
0 if m>N-—1
Then,
+M)
(27) = Lawn(p) = Y Lagen(m)e ™™ =Y " Lypn(m)e ™™ (35)
m=—M MmEZ

10



and

—+m
(24) = / Largn(p)’dp = 2 Z Lasgn(m —QWZLMkN % (36)

g m=—M) meZ

That is, the Fourier series expression and the Parseval’s equality had been found.
Notice that

+
: (m)) < % /_7r Lrgen(p)dp = %a (37)
so from (34)
|kaN|§( —M)cok]v Ym € Z.
v N 3
On the other hand, the Fourier partial sums, in general, are
+7
(Sarf)(u Z flm)e= ™ = | F(3)Das(p = 7)dy (38)

which for the tapered Dzmchlet kernel, with M = N — 1, provides
+m

(SarLaran) (1) = / Latsn () Dot — Wy = Lasin()  (39)

as steps (29) states
For the derivatives, directly from (35),

+M
Ln() = 3 (=im)' Laggn(m)e™™™ = 3" (—im) Lyggon (m)e™™  (40)

m=—M mez
or, from (30) and (34),

+M

1 (N = m) e
Ll) - AN n ipum
M,k,N(:u) o Z (=i)'n N-Tcorn €
+M
= Z (—in)lLM’k’N(n)eﬂ“m. (41)
m=—M

To see directly that Ly n(1) is an analytic function (there is another justifi-
cation in 12) for u close to py

Largn(p) = Z Lz n(m)e ™

— E LM7k7N(m)e—lﬂome—l(u—uo)m

+M R ' 00 (—Zm)l

= > Lugn(m)eromy (= )
m=—M 1=0
00 1 +M .

= Z—, Z (—im) Lag e (m)e” "™ (1 — o)
=0 "m=—M

& L (o) l

11



6 The tapered Fejér kernel

6.1 Definition
The tapered Fejér kernel is defined, for N € N*, as

Definition 8

N—-1N-1
1 r\k s\k_—iu(r—s)
Kk’N( ) 27TZN 1h(%)2k ;;h(ﬁ) h(ﬁ) e (42>
) = e Hn W = e H P, (43
EN(H) = 27rH2k7N(O) EN(U) T N () = 27TH2k7N(O) EN(H)]-

The name of the kernel is based on the fact that K n(u) is equal to the classical
Fejér kernel when there is no taper, that is, when h(z) = I{[0, 1]} with I{} being the
characteristic function. Since in the double sum Zivz_ol Zivz_ol there are IV terms with
r—s=0, N—1terms withr —s=1and N —1 with r —s=—1, N — 2 terms with
r—s=2and N —2 withr —s= -2, ..., and 1 terms with r —s = +(N — 1) and 1
with r —s = —(N — 1), it can be written

N—1N-1 +(N-1) +(N-2) +1
Z Z efi,u(rfs) _ Z efi,un + Z efi,un 4t Z efi,un +1
r=0 s=0 n=—(N-1) n=—(N-2) n=-—1

=27 Dy-1(p) + 20 Dn—o(p) + - -+ + 27Dy () + 27 Do(p) = 2N F(p),  (44)
where Dy(-) and Fy(+) are, respectively, the classical Dirichlet’s and Fejér’s kernels.
Then, in this particular case Ky n (1) = 527N Fy (1) = Fn(p).
In terms of the taper coefficients, this kernel can be written as

1 +(N-1)

K n (1)

or

Kin(p) =

271'607]{7]\[
n—

—iun
E Cn,k,N€ H

——(N-1)

+(N-1)

1

27TH2]€’N(0)

1
o

n=—(N-1)

Y (N—|nl)~Cp kN In|
— womy ek N g T p—im
w2 - ( N) ‘

n=—(N-1)

Cn7k7N e*’L‘U/n
Co,k,N

N~'Cok,N

N-1
[cak,N + 2 Z cnvkacos(;m)]

n=1

1+2 Z EnbN cos(,un)]

Co,k,N

12



6.2 Properties
Lemma 4
1. Ky n(p) is continuous on
2. Kyn(p) is even, since from the symmetry of its expression Ky(u) = Kn(—p)
3. Kipn(p) € R by definition. Besides, K n(p) = Kpn(p) = K n(—p)
4. Kpn(p) >0 by definition
5. Ky n(p) is 2m-periodic, since so the exponential function is
. TSy Hy 0)2 .
6. limy—o Ky n (1) = mHk,N(O)Hk,N(O) = #(N)(O) = Kin(0), since Hy n(1)
18 continuous on
7. As N"'H;, x(0) — Hy, when N — +o0,
H; n(0)? N=2H; x(0)?
Kk,N(O) = k’N( ) = — k’N( ) — +00
27TH2]€7N<O) 27TN 1H2k7N(O)
when N — +o00. Besides, Kxn(0) < N for large values of N.
8. It holds that Ky n(p) < Kjn(0) when i) h(-) is non-negative or non-positive,
or i) k is even, since |Hyn(p)| < |Hgn(0)|. In these cases sup, Ky n(p) =
K n(0)
9. From the Cauchy-Schwarz’s inequality, when i) h(-) is non-negative or non-
positive, or ii) k is even,
N-1 2
1 ko N
K = — h(<)e™ <—NH. 0)=—.
e (K) 27 Hapo 0 (0) Z; (%) = 27 Hap n (0) 2 (0) =52
This result can also be obtained from 8 and 7, since the mentioned inequality
implies —under i) or ii)— that Hy n(0)*> < NHa n(0). (On the other hand
H? < Hyy by Jensen’s inequality. )
10. From the definition and (15),

1 +2(N-1)

Kevln)? = — 1 dp . ve” "
k;,N(:u) [QWHQk,N(O)]Z n:_g(;\f—l) .

+2(N—-1) d
n,k,N —iun
= @ > e (48)

2
n=—2(N-1) O0.kN

13



11.

12.

13.

14.

From (46) and (18), Ky n is asymptotically as close to Fy as desired. In fact,
both of them tend to the Dirac’s delta function.

From 7 of Lemma 1

1 +(N-1) c
n,k,N _;
K _ K, iun
k,N(/“L) ' _(ZN_D COJf,Ne
1 +(N-1) 47
o Z Ky n(v)e ™ dye "
n=—(N-1)7 "
_ 1 Kon() TV itnings,
2 . ’ n=—(N-1)
1 [*"
= % Kka(’}/)Zﬂ'DNfl(,u - 7>d7
+m

= Ken(y)Dn-1(pp —v)dy

= (Dn-1x Ky n)(p). (49)

Since in these steps the continuity or derivability of h(-) have not been used, as
a particular case F(u) = (Dy—1 % Fn)(1).

From 1, 7 and 20 below it seems that Ky n(p) — 6(0) when N — +o0, where
d(+) is the Dirac’s delta function. To prove this important result, item 11 could
be called, but a direct argument is the following:

+(N-1)
Kon(n) = 1 3 WN-ln) " engen (1 0L im
RN 2w e (N-1) N~'Cok,N N

1 X
e % Z eilun :5(0)

n=—oo

when N — +00. On the one hand, W — 1 (see 6 of Lemma 1);

on the other hand, 1 — |n|/N — 1 for any n (a similar argument is used, for
example, by Priestley [1981] in Theorem 4.8.1 and in section 5.5.2.)

Ky n(p) is derivable and

) 1 N—1N-1 z . .
Kk,N(M) = m g [—i(r —s)['h (]LV) h (%) e~ i(r=s)
= i +(§:1) (_i)lnlwe—'mn‘ (50)
2 n=—(N-1) €0,k,N



15.

16.

17.

18.

19.

20.

21.

22.

KQN s a continuous, even and 2m-periodic function on u. Besides, K;QN(M) eR

since from the symmetry of the expression KQN(M) = KQN(/L).
On the other hand, Ky (1) is an analytic function, as it is a finite sum of
analytic functions

As a rough bound, when i) h(-) is non-negative or non-positive, or ii) k is even,

K v ()] < (N = 1) Ky 5 (0) < N v (0)

For 1 odd, K,QN(O) = 0 from the symmetry of the expression

Forl even, when i) h(-) is non-negative or non-positive, or ii) k is even, it holds

that K (0) < 0 if i < 0, and K (0) > 0 if i' > 0

With usual taper functions Kj 5 (0) # 0; that is, Ky n () is not lineal in pp =0
or, geometrically, the curvature of the graph is not null in p = 0. With this
taper functions K}/ 5 (0) < 0 and Ky, n(p) has a mazimum in p = 0 when i) h(-)
is non-negative or non-positive or i) k is even (see the previous property)

With (50) and some computes,

l [
K} (1) = (Dy—1 % K)) ) (1) (51)
It holds that
o N-1N-1 L [T
K d h(£) h(2) —in(r—s) 4
_W e (g 27TH2kN ; —~ N N /—7r ‘ H
1 N—-1 .
= —— N () =1
27TH2k7N(O) (N> T

I
=)

r

Ezpression (42) highlights which the normalization factor is.
From 2 and 20,

0 1 —+m
/ Kin(p)dp =5 = Kin (p)dp
—7 0

(Incomplete) Let {an} be a sequence of positive real numbers such that ay —
0; since

—+m

= [ Katoin = |

-7 lul<an

K, n (p)dp + / Ky, v (p)dp

|ul>an

when the second integral tends to zero, as ay — 0, for any a > 0 there exists
Ny such that ay < a when N > Ny, and in this case

K (i) < / K ()dp — 0.

lul>a lul>an

15



23.

2/.

25.

26.

217.

Then, to prove the asymptotic negligibility of the tails it is enough to find a
sequence {an} such that the first integral of the right hand tends to 1. Since
odd derivatives of Ky n in p =0 are null,

1 )
Ky n(pn) = K n(0) + 3 wn(po)®  with  pg € (0, )

then

[ Kusldn = 2axKen(0)+ 5000 [ il
lnl<an lul<an
= 2anKpn(0) + % wo (H0)ay-
If ay = (2K, n(0)) 71,
"
% IZ,N(O)CﬁV = gkg(%)))3
s0 it seems it is necessary a better bound than 15 for K/ x(0)...

Ky N € L,[—7, 4], although perhaps || Ki n ||,— +00 with N

From (45), or directly from 7 of Lemma 1,

—+7
Cne,N = COk N K n(y)edy (52)

—T

From (48),

. 1 + +2(N-1) d N ‘
Kk,N(M)ZdM = W / Z #6_2ﬂndﬂ
—T -7 n:—Q(N—l) U,k,N

1 d
_ 0kN o

(2m)? C%,k,N

1 +(N-1) ‘ 2

n,k,N
= — S . 53
2T Z ( ) ( )

¢
n=—(N-1) \ OEN

This result can also be obtained directly from (45)

From (50),

+m

Ky (m)dp = 0. (54)

—T

This expresses the symmetry of Ky n.

(Incomplete) It holds that, for j andl fized,

+m A 1 +7 ‘ ‘
Kk N(u>elﬁ(tj —tl)dlu — 2 :+£]X—;7)_1 Cok Ne—zp,nez,u(tj—tl)du
-7 7 QWCO,k,N o n=—( )R
1 Ct;—t;,k,N
QWCO,k,N ti—tik,N {| J l| }

16



28.

where 1{} is the characteristic function. That is, only close points provide a
value different from zero for the previous integral. In this item the notation t;,
t;, S, N... is the used in Casado (?7%7).

Now, for j fixed it can be defined the mﬂuence interval of point t; as

Li=A{t./ |t; -t =[S — D] <N} (55)
and it holds that
{t. /ING =Dl <N}=A{t; / tt =1;} if S=N

{t /1SG=DI<N}y={t. /i =1l <N/S} i S/N—=0

In I; there are only one point when S = N and 2N/S points when S/N — 0
(notice that in this case N/S — o0). There is a subtle difference between I
defined in (55) and B; defined in Casado (7777): the length is given by deﬁm—
tion for the former and imposed by orthogonality properties of the trigonometric
functions in the latter. Now, the sum on | is

t —t, kN
Z/ Kjon (p)e* =t dy, = Z SR € 1)

C
=1 0,k,N

0.k, N _ 1 ’Lf S =N
€0,k,N

il Ct]'—tl»kaN]I{tl € 1;}

€0,k,N

if S/N —0

1 if S=N
. (57)
if S/N—0

As Ky y € Li[—m,+m], the Fourier coefficients can be considered; for m € Z,

A e | w0 MmN
Ky (m) = o Ky (p)e™ " dp = (58)
0 if m>N-—1
Then,
+(N-1)
(45) = Kipn(p) = Z Ky n(m)e ™ = Z Ky n(m)e " (59)
m=—(N-1) meZ
and
. +(N-1)
(53) = Ky (p)%dp = 27 Z Ky n(m)®* =21 ) " Kyn(m)* (60)
-7 =—(N-1) mez

That is, the Fourier series expression and the Parseval’s equality had been found.

Notice that
A 1 + 1
‘Kk,N(m)’ < o Ky n(p)dp = —

7
) 2m

(61)
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so from (58)
|Co e, N | < Coe N Vm € Z

This result was also obtained directy from (19). On the other hand, the Fourier

partial sums, in general, are

M _ +7
(Suf)(p) == > fm)e ™ = [ f(v)Dy(p —7)dy

which for the tapered Fejér kernel, with M = N — 1, provides

(Sn-1Kpn) (1) = ' Kin(v)Dy-1(p — vy)dy = Kin (1)

—T

as steps (49) states.
For the derivatives, directly from (59),

+(N-1)
K= 3 (=im) K (m)e ™ = 3~ (=im)' K,y (m)e ™"
m=—(N-1) mez.

or, from (50) and (58),

1 (—i)nlc :
l n,k,N _iun
Kly(u) = o Y —hEe

+(N-1)

= > (=in)'Kpn(n)e .

n=—(N-1)

(62)

(63)

(65)

To see directly that Ky n(p) is an analytic function (there is another justification

in 14), for u close to py

+H(N-1)
Kyn(p) = Z Ky n(m)e ™

m=—(N-1)

+(N-1)
= Z Kk7N(m)6_iMOm6_i(M_M0)m
m=—(N-1)

+(N-1) o

= ) Kin(m)e oy (—zlv'n) (1 = po)'
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7 Relation between the kernels

Since {Lp k. n(p)}arn is a triangular array of functions, sums in several directions
can be studied. The results of these sums have been represented in Figure (1).

An important general relation between the tapered Dirichlet and Fejér kernels is
that the latter can be expressed as a Cesaro-like sum from the former. For the N-th
row, with the same idea used to obtain (44), or using that for a general sequence of

numbers Z ]__Z i = Zj:(]f&\}ll)(N — [j|)a;, it can be written
N-— N-1 +M
1 1 1 (N=Im) "' Cmk, N _ijum
Nmz miw(e) = ) o XL e
N-1 +M
LN N O kN
2T o 0k, N
+(N-1)
1 N—ln))"tcy, ,
_ L (N — |”D( nl) KN —ipm
T e (N-1) Co,k,N
H(N-1)
_ 1 Cn kN _ipn
2 SNy CORN
= Kin(p) (66)

The previous average is not the classical Cesaro sumation, as the terms Ly n (1)
depends on V. The sum on M explains why the kernel K}, 5 does not depend explicitly
on M, only on the taper parameter N; nevertheless, there is an implicit relation
between M and N in the definition of the triangular array. By using the Fejér sums
notation, the previous result can be expressed as

UNALM,k,N = Kk,N- (67)

The sum also shows that the first element of the sequence { Ky n}n is K1 = % (with
the formal assumption that h(0) # 0, as it was done for Ly n). Finally, results (66)
and 11 of Lemma 3 are a new proof of 13 of Lemma 4.

On the other direction, if the sum is applied to the I-th column,

N Y1 E e
_ n—im kaL —Zum
N—|—1— X:Z N+1—l;27r oy " 'Cokn o
M N
1 *z: 1 (=l Cmkin iy
21 N+1-1 n=1Co k.n
——M = ”
R
— = > e = Dyy(p) (68)
m=—M




1 0 Lywa = Kis
2 01 L, L'..A':E = K'\':"
.3 O 1 2 Lu_k1 L'..,\',_‘ Lz: 3 — K'\_::
N 01 2...N-1 Ly, n L L, Ly = K,
! l l l ! ! i
o IN D, D, D Dy —

l

hix)=Iy,(x) (No taper)

l
N M Dy Fiy
1 0 D, = F,
2 01 D, D, = F,
3 012 D, D, D = F,
N 01 2..N-1 D, D, D D, _, = F
l | I Il I I }
x IN D, D, D, Dy, —

Figure 1: Triangular arrays of kernels, with and without taper, and the averages (or
its limits) in the margin

(n=lm) " tem k.

since, from (18), ~— = —
sR,m

— 1. Another way to justify this is to consider the
item 7 of Lemma 3 and the properties of the Cesaro sumation. As expected, when
there is no taper these coefficients take the value 1 and the limit becomes an equality.

Finally, only the diagonal of the triangular array can be taken into account (this

can be seen as a sort of synchronization of the parameters). Thus, for the sequence
{Larkarsr () far = {Ln—1,n (1) v, from (18),

LT e e
. _ 1 m m,k, 6—ium N @_ium =J. 69
N 1,k,N(M) o m:;\fl) N=Co N m_z—oo o

A different kind of relation can be obtained from the integral expressions (32) and
(52); for any n

n| o i o in
-y / Ly n(y)e"dy = Ky n(v)edy (70)

—T —T

8 Summary of expressions

At this point it is interested to summarize some expressions:
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Classical Dirichlet’s kernel

1 XK
Dalp)i= 5= 3 e (6
n=—M
1 M
Dy (p) = o 1+ 22 cos(pun ] 8]
n=1
Classical Fejér’s kernel
| M-l
Fa(p) i= 52 3 Dul) 17
m=0
;| T In]
Fulp) = o (1-5)e o
n=—(M-1)
1 M-1
Fu(p) = Py 1+2 Z (1 - —) cos(,tm)] [11]
n=1
Tapered Dirichlet kernel
L (V=) CooN i
LMkN(,U) 27T Z me K [27]
(N—n)~'Cp,
Larg,n(p) = 1 +QZ 1COk;N005(Mn) [28]
Tapered Fejér kernel
K n( Z Ly e, ( 66]

1 +(N-1) (N -1c ]n] .
R S (LT

27 e (N-1) N~=tco kN N
1 = (N—n)~'c n
n n,k,N
K =—|142 _ (1 — —) 47
kv (1) o + ; T N cos(,un)] [47]

That is, the tapered kernels can be expressed in the same type of sums and fulfill
the similar relations than the classical ones:
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e Compare expressions (27) and (28) with (6) and (8).

Compare also expressions (46) and (47) with (10) and (11), respectively.

e Compare expression (66) with (7).

Finally, compare the relation between expressions (27) and (28) with (46) and
(47), respectively, with that between expressions (6) and (8) with (10) and (11).

9 Naive applications

Both the tapered Dirichlet and Fejér kernels are symmetrical and tend to the Dirac’s
del function when M — oo. For such kernels

1. The following point convergence holds when M — 400

0 when u#0
f()Su(p) — ¢ 0 when p=0 and f(u)=0
oo when p=0 and f(u)#0

2. The following weak (or in distribution) convergence holds when M — +oo

if a<0<b
if a=0 or b=0
if b<0 or a>0

O =

3. The following weak (or in distribution) convergence holds when M — +o0

, () if a<0<b
I F () Su(p)dp — { 1F(0) if a=0 or b=0
() if b<0 or a>0

4. Since

+m

t/f )Sar () = f<wM ¢L/’f VSuldu— [ £ Su(u)dp,

the asymptotic weak (or in distribution) convergence, when M — +o0, of this
relation can be described symbolically as

F00) = F0)—0—-0 if a<0<b
170) = f0) - 1) -0 i a=0
70) = f0)—0-170) it =0
0 = f0)—0—f(0) if b<0
0 = f(0)—f(0)—0 if a>0
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5. If || f ||eo exists

/a bfwsM(mcm\ < / 10| Sae ()

b
<1 F) e / Sar(y1)du

| f() lo if a<0<D
- %”f(ﬂ)”oo if a=0 or b=0
0 if b<0 or a>0

when M — +o0.

6. The previous tapered kernels can allow for some existing proofs to be improved
in the taper framework. This could provide slightly —but crucial— better
rates of convergence. In Dahlhaus (1997) one finds an example: We conjecture
that the rate O(N~2) cannot be improved with a periodogram type estimator.
A periodogram without taper would lead to a bias of O(N™') and therefore to
\/N/N — 0 which contradicts N/\/N — 0. Thus, without taper it is not
possible to achieve \/T-consistency at all. It is noteworthy that the use of a
data taper does not lead to an increase of the wvariance if S/N — 0. The
improvement of such existing proofs would be based on the idea of introducing
the taper in the process and changing asymptotically, in the proof, the tapered
versions of the kernels by the classical ones wherever the former appear.

7. Another application takes place in the proof that has motivated these definitions
(in Casado, 7777)...
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