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Some calculus-tricks are quite easy. Some are enormously difficult. The fools who

write the textbooks of advanced mathematics—and they are mostly clever fools—

seldom take the trouble to show you how easy the easy calculations are. On the

contrary, they seem to desire to impress you with their tremendous cleverness by

going about it in the most difficult way.

Being myself a remarkably stupid fellow, I have had to unteach myself the difficul-

ties, and now beg to present to my fellow fools the parts that are not hard. Master

these thoroughly, and the rest will follow. What one fool can do, another can.

Silvanus P. Thompson

(from the prologue of Calculus Made Easy)



To my family, for the absolute confidence they have always placed
in me (even when they did not understand why my —our— salary and
holidays were not “like those teachers usually have”).
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Preface

The following body of work1 is part of the research that I have done, in collaboration with my

advisors, over several academic years at the Universidad Carlos III de Madrid. I am very pleased

to have had the opportunity to help with the teaching tasks at the Departamento de Estad́ıstica.

This document is a digital version —by common consent of my advisors— of my doctoral

thesis, defended on 12th July 2010. Some misprints have been removed and few explanations,

remarks, equations and pictures have been included. The margins have been reduced and the

interline spacing has been set to one and a half, instead of double. As a result, a lot less pages

were needed. Several appendices with auxiliar theory have been included (I am solely responsible

for these sections). They contain well-known theory related to the mathematics used —in a more

or less direct way— in the previous chapters. Many statisticians are not mathematicians; for this

reason, the index has been expanded to make these appendices more accessible. Readers with

enough background knowledge will not need to consult them.

This text is organized as follows: the first chapter begins with the basic mathematical nota-

tion, followed by the main definitions and classical results, and concludes with general ideas on

the statistical problem of classification are provided, just before the exposition of our proposals.

Chapters two and three are devoted, respectively, to our time series and functional data clas-

sification methods; these chapters can be independently consulted. Several possible extensions

and forthcoming work are proposed in chapter four. Finally, some conclusions are summarised.

In both chapter one and the appendices, the theory included is the “minimum necessary” while

being, at the same time, selfcontained.

August 2010

1Finalist of the 2011 Classification Society Distinguished Dissertation Award, supported by Chapman and

Hall/CRC. The author was also given a travel award to attend the annual meeting of the Classification Soci-

ety and present it (June 16-18, 2011 Carnegie Mellon University, Pittsburgh, Pennsylvania, EEUU).
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Abstract

The main aim of this doctoral thesis is to develop classification techniques for dependent and

functional data. Methods for classifying time series and functional data are proposed. Although

this work involves several type of data, the functional data play a central role. An important point

of both classification methodologies is that the original problems are not directly dealt with: the

time series problem is rewritten as a functional data problem while the functional data problem

is solved using a multivariate technique. Nevertheless, it is worthwhile noticing the different role

of the functional data in the two forthcoming proposals: in the time series problem functional,

estimators are constructed; while in the functional data problem, curves are the primary data.

For the classification of time series, their integrated periodograms are considered instead of

the time series themselves. Subsequently, a new element is assigned to the group minimizing the

distance from its integrated periodogram to the group mean of integrated periodograms. Although

the periodogram is defined only for stationary time series, the application of the methodology to

nonstationary series is still possible by calculating these periodograms locally. Finally, functional

data depth is applied to make the classification robust.

The classification of functional data arises naturally in the previous framework. Moreover, the

problem of selecting the most appropriate form (crude functions, their integrals or their derivatives)

to express the data is also suggested. Without loss of generality, this second problem is equivalently

formulated in terms of functions and their derivatives of different order, without integrals. In this

thesis, a single methodology is proposed to cope with these two tasks at the same time. Following

the same criterion of classifying a curve by using the distances from the function or its derivatives

to group representative (usually the mean) functions or their derivatives, the combination of those

distances is proposed in our method. The proposal works with a multivariate variable defined in

terms of the distances. Moreover, an automatic form of ranking the original functions and their

derivatives by discriminant power is obtained.

Key words : classification, time series data, integrated periodogram, functional data, depth, multi-

variate data, discriminant analysis, weighted distances.
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Chapter 1

Introduction

Summary: The different types of data involved in this thesis are explained with the

minimum necessary extension. Although this is a thesis on Statistics, not on Probabil-

ity, the next sections begin with the theoretical models frequently used to fit the data.

Knowing these models is essential in understanding the statistical methods proposed

later. Finally, the classification problem is presented in a general form.

Key words : multivariate data, time series, functional data, supervised classification.

1.1 Notation

The following mathematical notation will be used throughout this document:

X and x for a univariate variable

X and x for a multivariate variable

Xt and xt for a (discrete-time) sequence of variables

X(t) and x(t) for a (continuous-time) family of variables

X (t) and χ(t) for a function (depending on the variable t)

Upper case letters represent stochastic quantities, while lower case letters represent nonstochastic

numeric quantities. The letter Y is used for mathematical objects of the same kind, but with

some dependence on the corresponding objects denoted with X.

In addition, for samples the subindex e denotes the e-th element of a sample of size n, and,

when there are K different populations or groups, the superindex (k) denotes the k-th population

or group.

For a general matrix M of size n1 × n2, the following notation will be used sometimes:

M =


m11 · · · m1n2

...
. . .

...

mn11 · · · mn1n2

 = (mij)i,j,

where i = 1, . . . , n1, j = 1, . . . , n2. Finally,

2



DiX (t) and Diχ(t) denote the i-th derivative,

with respect to the real variable t, where D0X (t) ≡ X (t) and D0χ(t) ≡ χ(t).

1.2 Stochastic Vectors

1.2.1 Models

Definition 1 A multivariate random variable or random vector of dimension p is defined as

X = (X1, . . . , Xp)
t, (1.1)

where Xi are simultaneous univariate random variables (defined in the same probability space).

The previous vector can be represented through the following application

X : Ω −→ Rp

ω → X(ω)
.

That is, for fixed ω a value in Rp is obtained, while a random variable is obtained when the

subindex —in the vector— is fixed.

Definition 2 The mean vector of the multivariate random variable X is defined as the (column,

in this case) vector

µX = (µ1, . . . , µp)
t = (E(X1), . . . ,E(Xp))

t = E(X). (1.2)

Definition 3 The covariance matrix of the variable X is defined as

ΣX = (σij)i,j = (E((Xi − µi)(Xj − µj)))i,j

= E (((Xi − µi)(Xj − µj))i,j) = E
(
(X− µX)(X− µX)t

)
. (1.3)

Although it is implicit in the previous definition,

Definition 4 Given two univariate variables Xi and Xj, the covariance between them is defined

as

cov(Xi, Xj) = E
(
(Xi − µXi)(Xj − µ−Xj)

)
= σij. (1.4)

As a particular case,

Definition 5 The variance of a univariate variable Xi is defined as

var(Xi) = cov(Xi, Xi) = σii = σ2
i . (1.5)

3



Definition 6 A univariate compound random variable is defined as

Y = a1X1 + . . .+ apXp = atX, (1.6)

where a = (a1, . . . , ap)
t ∈ Rp.

Remark 1 The nomination ‘compound variable’ is the literal translation of ‘variable compuesta’,

from Cuadras (2007).

Definition 7 A multivariate compound random variable of dimension q is defined as

Y = (Y1, . . . , Yq)
t, (1.7)

with

Yj = a1jX1 + . . .+ apjXp = atjX, j = 1, . . . , q (1.8)

or, in matrix notation,

Y = AtX, (1.9)

where A = (aij)i,j is the p× q matrix of the coefficients.

For the previous definitions, it holds that

Proposition 1

µY = AtµX, (1.10)

and, for the particular univariate case, µY = atµX.

Proof.

µY = E(Y) = E(AtX) = AtE(X) = AtµX.

�

and

Proposition 2

ΣY = AtΣXA, (1.11)

and, for the particular univariate case, ΣY = atΣXa.

Proof.

ΣY = E
(
(Y − µY)(Y − µY)t

)
= E

(
(AtX−AtµX)(AtX−AtµX)t

)
= E

(
At(X− µX)(X− µX)tA

)
= AtE

(
(X− µX)(X− µX)t

)
A

= AtΣXA.

4
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Proposition 3 If Y1 = atX and Y2 = btX, it holds that

cov(Y1, Y2) = atΣXb, (1.12)

where cov(Y1, Y2) is given by 1.4.

Proof.

cov(Y1, Y2) = cov(

p∑
i=1

aiXi,

p∑
j=1

bjXj) =

p∑
i=1

aicov(Xi,

p∑
j=1

bjXj)

= at

(
cov(X1,

p∑
j=1

bjXj), . . . , cov(Xp,

p∑
j=1

bjXj)

)t

= at

(
p∑
j=1

bjσ1j, . . . ,

p∑
j=1

bjσpj

)t

= atΣXb.

�

Corollary 1 If Y = atX, it holds that

var(Y ) = atΣXa. (1.13)

Proof. It is a direct conclusion of either of the two previous propositions.

�

1.2.2 Multivariate Data

In this thesis, numeric variables are quantitative and continuous, and they can be thought of as

realizations of random variables.

Definition 8 A multivariate variable of dimension p is defined as the vector

x = (x1, . . . , xp)
t, (1.14)

where xi are simultaneous univariate numeric variables.

Remark 2 This definition makes it clear that the termed Multivariate Analysis deals with the

simultaneous relationships among the variables of the vector.

The compound variables are defined as
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Definition 9 A univariate compound variable is defined as

y = a1x1 + . . .+ apxp = atx, (1.15)

where a = (a1, . . . , ap)
t ∈ Rp.

Definition 10 A multivariate compound variable of dimension q is defined as

y = (y1, . . . , yq)
t, (1.16)

with

yj = a1jx1 + . . .+ apjxp = atjx, j = 1, . . . , q (1.17)

or, in matrix notation,

y = Atx, (1.18)

where A = (aij)i,j is the p× q matrix of the coefficients.

1.2.3 Statistical Inference

Let us consider that the previous multivariate variable x = (x1, . . . , xp)
t has taken the values of

the following sample of size n, expressed in a matrix

(x1, · · · ,xn) =


x11 · · · x1n

...
. . .

...

xp1 · · · xpn

 = (xij)i,j , (1.19)

where xe, the e-th column of the matrix, contains the e-th element of the sample of size n. It is

supposed that the multivariate variables xe are also simultaneous, that is, in this situation there

is no interest in the evolution through time. We are relating the e-th column of the sample with

the univariate variable xe of x. Then, some well-known results on the parameter estimation of the

models from the samples of data are the following (see, for example, section 2.8 of Mardia et al.

[1979]):

Definition 11 The covariance between xi and xj is defined as

cov(xi, xj) = n−1

n∑
e=1

(xie − xi)(xje − xj), (1.20)

where xi = n−1
∑n

e=1 xie and xj = n−1
∑n

e=1 xje.

Definition 12 The variance of xi is defined as

var(xi) = cov(xi, xi). (1.21)
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Mean Vector

• The quantity E(Xi) is estimated by xi = 1
n

∑n
e=1 xie.

• Then, µX is estimated by x = 1
n

∑n
e=1 xe.

• For the multivariate compound variable Y, the mean µY is estimated by y = Atx. For the

univariate compound variable Y , the mean µY is estimated by y = atx.

Covariance Matrix

• The matrix ΣX = (σij)i,j is estimated with bias by Σ̂x = 1
n

∑n
e=1(xe − x)(xe − x)t =

(cov(xi, xj))i,j. With the usual definition σ̂ij = cov(xi, xj), it holds that σ̂ij estimates σij

and Σ̂x = (σ̂ij)i,j.

• The matrix ΣX is estimated without bias by Sx = n
n−1

Σ̂x.

• For the variable Y, the matrix ΣY is estimated with bias by Σ̂y = AtΣ̂xA. For the variable

Y , the matrix ΣY is estimated with bias by Σ̂y = atΣ̂xa.

• For the variable Y, the matrix ΣY is estimated without bias by Sy = AtSxA. For the

variable Y , the matrix ΣY is estimated without bias by Sy = atSxa.

1.2.4 Mathematical Framework

Although it is always necessary to take into account the mathematical aspects of any statistical

study, usually they are understood and not mentioned explicitly. For each kind of object, we shall

devote a brief section to justify the main mathematical operations.

The sets of multivariate vectors (stochastic or not) of dimension p take values in the set Rp,

that is a linear space with the usual operations of sum and product with a real number. With the

Euclidean or the Mahalanobis distance, the sets are metric spaces; it is also possible to work in

a Banach or in a Hilbert space by considering, respectively, a proper norm or inner product (see

sections 2.1.1, 3.1.1, 3.3.1 and 3.4.1 of Kolmogórov and Fomı́n [1975]).

The set of matrices formed from the previous multivariate vectors are also a linear space with

respect to the usual sum and product with a scalar. The product of matrices is a little more

complicated, since the set is a noncommutative group.

Remark 3 For concrete data, for example a matrix, it is possible to test some numerical prop-

erties. Nonetheless, when the data —numeric or stochastic— are not yet known, although some

numerical properties can still be proved (those independent of the concrete values), suppositions

like “when the matrix is not singular”, for example, are generally needed.

7



1.2.5 Addendum: Compound Variable Geometry

In this subsection, the geometric interpretation of the univariate compound variable is hightlighted,

y = a1x1 + . . .+ apxp = atx, (1.22)

where a = (a1, . . . , ap)
t ∈ Rp is the parameter.

Geometry in Rp

Let x and a be (column) vectors, both with origin in 0; then, the projection of x onto

the line —one-dimensional linear subspace— determined by a is obtained as follows.

Let Va be the linear subspace of Rp generated by a; then any x ∈ Rp can be written

uniquely as the sum of the projections on Va and its complementary V ⊥a , that is,

symbolically, Rp = Va ⊕ V ⊥a . Since

x = ProjVa(x) + ProjV⊥a (x) = ca + ProjV⊥a (x), (1.23)

after premultiplying by a,

〈a,x〉 = c〈a, a〉, (1.24)

so, as 〈a, a〉 6= 0,

ProjVa(x) = ca =
〈a,x〉
〈a, a〉

a =

〈
a

‖a‖e
,x

〉
a

‖a‖e
=

(
at

‖a‖e
x

)
a

‖a‖e
, (1.25)

where ‖ · ‖e denotes the Euclidean norm in Rp and 〈·, ·〉 denotes the inner product.

Then, the parameter a of the compound variable can be interpreted geometrically as

a parameter determining the direction into which x is projected.

The linear subspace and the vectors x and ProjVa(x) can be represented (literally

only for low dimensions) graphically in Rp.

Alternatively, if there is no interest in the interpretation of the “line” (subspace) as a subspace

of Rp, this “line” can be seen as an independent axis.

Geometry in R

For compound variables, the interest usually relies on the module of the projection,

that is, in the following part 〈
a

‖a‖e
,x

〉
=

at

‖a‖e
x. (1.26)

In addition, if there is no interest in the scale factor of the projection, a characterization

is provided by the numeric factor

atx = y. (1.27)
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Remark 4 Note that this approach justifies the use of the expression ‘the premultiplication at·
projects x into a one-dimensional space’.

Another possible geometric interpretation of the compound variable can be obtained by con-

sidering a higher-dimensional linear space.

Geometry in Rp+1

Using equation (1.27) in another form

atx− y = 0, (1.28)

and, considering the new (p+ 1)-dimensional linear space determined by the variables

(x, y), it is clear that the hyperplane (1.28), with director vector (at,−1), projects the

multivariate point x into the last axis, the y axis.

These geometrical interpretations will be reviewed several times in chapter 3 and appendix

D, since the choice of a, from the information provided by multivariate data, will be the main

objective there. Selecting a for the compound variable can be interpreted geometrically as selecting

(the direction of) a one-dimensional subspace into which the multivariate data will be projected.

This choice is usually guided by some explicit criterion. Although in the theoretical compound

variable y = atx, the term x is a multivariate variable and a is a multivariate parameter, in the

empirical selection of the direction of the one-dimensional linear subspace, a will be temporarily

considered a multivariate variable. Finally, let us note that making any restriction on the value of

a is equivalent to making restrictions on the direction into which the compound variable projects

the data.

Remark 5 The theory developed in this addendum acquires special importance due to the fact

that any finite-dimensional Hilbert space is “structurally identical” (isomorphic) to Rp (see section

3.4.6 of Kolmogórov and Fomı́n [1975]).

1.3 Stochastic Processes

In this section, only discrete-time univariate stochastic processes are considered.

1.3.1 Models

Definition 13 A discrete-time stochastic process is a sequence of random variables (defined in

the same probability space and taking values in the same state space S),

(Xt, t ∈ Z), (1.29)

where the index t represents time.
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In the previous process, for fixed t the quantity Xt is a random variable, while for fixed ω a

trajectory is obtained, as represented through the following application

Xt : Ω −→ R∞

ω → Xt(ω)
.

Note that now the variables are not simultaneous, as those of the multivariate vector (1.1).

This mathematical object is defined to study dynamic (univariate) changes in time. On the other

hand, another possibility could be to consider multivariate stochastic processes (Xt, t ∈ Z), where

each Xt is a vector of simultaneous variables.

Two Domains

Stochastic processes can be studied from the time domain or, alternatively or additionally, from

the spectral domain. Time domain uses position or time as index, and the autocovariance —

or, equivalently, autocorrelation— function is the natural tool for studying the evolution in the

time domain. The previous definition corresponded to the time domain, but the Fourier Analysis

allows the use of the frequency as variable. The Spectral Analysis is the adaptation of the Fourier

analysis to deal with stochastic —rather than deterministic— functions of time.

In order to handle processes, some additional structure is assumed under the name of station-

arity. It implies homogeneity in the time domain, in the form of autocovariance function invariant

under time shifts. This similarity with the periodicity of functions will allow the decomposition of

processes, under some conditions, in terms of regular underlying oscillations whose magnitudes are

random variables; that is, a decomposition into the sum of uncorrelated periodic components. The

spectrum, the set of frequencies of oscillations, is the natural mathematical tool in the frequency

domain.

Definition 14 The stochastic process (Xt) is strongly stationary if the random vectors,

(Xt1 , . . . , Xtd) and (Xt1+s, . . . , Xtd+s) (1.30)

have the same joint distribution for all t1, . . . , td and for all s > 0.

Thus, the finite-dimensional distributions of a strongly stationary process are invariant under time

shifts. These distributions characterize the whole process. For processes such that V ar(Xt) <

∞, ∀t ∈ Z, a weaker condition —implied by the previous— is presented in the following definition.

Definition 15 The stochastic process (Xt) is weakly (also termed second-order or covariance)

stationary if E(|Xt|2) <∞, for all t ∈ Z, and

1. E(Xt1) = E(Xt2),

2. cov(Xt1 , Xt2) = cov(Xt1+s, Xt2+s),
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for all t1, t2, s ∈ Z with s > 0.

Once the stationarity is imposed, the following definitions make sense:

Definition 16 The mean function of a weakly stationary process (Xt) is defined as

µt = E(Xt), t ∈ Z. (1.31)

Definition 17 The autocovariance function of a weakly stationary process (Xt) is defined as

σs = cov(Xt, Xt+|s|), s ∈ Z, (1.32)

where the covariance of any two variables (with finite mean) is defined as

cov(X1, X2) = E ([X1 − E(X1)][X2 − E(X2)]) . (1.33)

The variance of any variable X is defined as var(X) = cov(X,X).

From these definitions, it follows that the process (Xt) is weakly stationary if and only if

1. It has a constant mean.

2. Its autocovariance function is invariant under time shifts.

Stationary processes can be described in terms of the autocovariance function (it contains

enough information) or, equivalently, in terms of the following rescaled function.

Definition 18 The autocorrelation function of a weakly stationary process (Xt) is defined as

ρs =
cov(X0, X|s|)√
var(X0)var(X|s|)

=
σ|s|
σ0

, s ∈ Z (1.34)

whenever σ0 = var(X|s|) > 0.

Classical results linking both domains are provided by the Fourier analysis.

Theorem 1 - Wold’s Theorem. A necessary and sufficient condition for a sequence {ρs} to

be the autocorrelation function for some discrete-time stationary process (Xt) is that there exists

a function F (λ), having the properties of a distribution function on the interval (−π,+π), (i.e.

F (−π) = 0, F (+π) = 1 and F (λ) is nondecreasing), such that

ρs =

∫ +π

−π
eisλdF (λ), s ∈ Z. (1.35)

Proof. See section 4.8.3 of Priestley (1981). �

Definition 19 If the autocorrelation ρs satisfies (1.35) then F (λ) is called the spectral distribu-

tion function of the process.
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Theorem 2 Any integrated spectrum F (λ) can be written in the form,

F (λ) = c1F1(λ) + c2F2(λ) + c3F3(λ), (1.36)

where

1. ci ≥ 0, i = 1, 2, 3 and c1 + c2 + c3 = 1

2. Fi(λ) ≥ 0, i = 1, 2, 3 are distribution functions of the following types;

(a) F1(λ) is absolutely continuous with derivative F ′1(λ) which exists for almost all λ, and

the density function f1(λ), which is such that F1(λ) =
∫ λ
−π f1(h)dh, exists for all λ.

(b) F2(λ) is a step function with steps {ps} at points λs, say, s = 1, 2 . . ., and
∑

s ps = 1.

(c) F3(λ) is a “singular” function with zero derivative almost everywhere.

Proof. See section 4.9 of Priestley (1981). �

Remark 6 The part F3(λ) in (1.36) is highly pathological and usually ignored.

Definition 20 A stochastic process (Xt) is said to have purely continuous spectrum if F ≡ F1

in expression (1.36), that is, the other two parts are null.

Theorem 3 - Spectral Theorem. If (Xt) is a discrete-time stationary process with zero mean,

unit variance, and spectral distribution function F (λ), there exists a complex-valued process S =

(S(λ), −π < λ ≤ +π) such that

Xt =

∫ +π

−π
eitλdS(λ), t ∈ Z. (1.37)

Furthermore, S has orthogonal increments and

E(|S(v)− S(u)|2) = F (v)− F (u) for u ≤ v. (1.38)

Proof. See section 9.4 of Grimmett and Stirzaker (2001). �

Purely Continuous Spectrum

A purely indeterministic discrete-time stationary process (Xt) verifies that
∑+∞

s=1 |ρs| <∞ and, as

a consequence, has a purely continuous spectrum. In this case, the spectral distribution function

F (λ) is absolutely continuous and has density function f(λ), named as follows:

Definition 21 The function f(λ) is termed spectral density function.
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It holds that

F (λ) =

∫ λ

−π
f(h)dh, λ ∈ [−π,+π], (1.39)

so

F ′(λ) =
d

dλ
F (λ) = f(λ), λ ∈ [−π,+π]. (1.40)

Some other consequences are that the expression (1.35) becomes

ρs =

∫ +π

−π
eisλf(λ)dλ, s ∈ Z, (1.41)

and that the following theorem holds:

Theorem 4 Let {ρs} be the autocorrelation function (sequence) of a stationary sequence. If the

function F (λ) in (1.35) is differentiable with derivative f(λ), then

f(λ) =
1

2π

+∞∑
s=−∞

ρse
−isλ (1.42)

at any point λ ∈ [−π,+π] where f(λ) is differentiable.

Proof. See section 9.3 of Grimmett and Stirzaker (2001). �

Remark 7 It is important not to confuse the expression “purely indeterministic”, that is, without

a deterministic part at all, with the expression “purely random”, which is frequently used for

referring to the white noise or to an independent or uncorrelated sequence or family of variables.

Remark 8 The decomposition of f(λ) in trigonometric terms is highlighted when expression

(1.42) is written as

f(λ) =
1

2π

(
ρ0 + 2

+∞∑
s=+1

ρscos(sλ)

)
. (1.43)

Remark 9 The integrals in (1.35) and (1.41) are deterministic (classical), while the integral

in (1.37) is stochastic (although with deterministic integrand; for the definition of this kind of

integral see, for example, Grimmett and Stirzaker [2001]: section 9.4 for deterministic integrands

and section 13.8 for stochastic ones).

Under some conditions, a stochastic process can be expressed as an infinite combination of

white noise. Since the noise always contains the same information, it follows that the information

of the process can be encapsulated in a sequence of coefficients. The following theorem is a

consequence of the Wold decomposition (see Wold [1938]).

Theorem 5 Any (purely indeterministic) discrete-time stationary process (Xt) can be expressed

in the form

Xt =
+∞∑
s=0

asεt−s, t ≥ 1, (1.44)

with a0 = 1,
∑+∞

s=0 a
2
s < ∞ and (εs) a white noise process. The sequences {as} and (εs) are

uniquely determined.
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Proof. See section 10.1.5 of Priestley (1981). �

Remark 10 Due to its similarity with the finite moving-average (MA) models, the expression

(1.44) is known as the MA(∞)-representation of the process (Xt).

In Practice

Let us note that in a theoretically infinite stochastic process, only a finite quantity of variables

can be considered in practice,

(Xt, 1 ≤ t ≤ T ) = (X1, X2, . . . , XT ). (1.45)

1.3.2 Time Series Data

A time series can be interpreted as a realization of a (generating) stochastic process. For our

purposes, a formal enough definition of time series is the following:

Definition 22 A time series is a sequence of numerical variables,

(xt, 1 ≤ t ≤ T ) = (x1, . . . , xt, . . . , xT ), (1.46)

where the index t represents the time at which xt is observed.

For this definition to be useful, some dependence among data is supposed. A time series is named

stationary if its generating stochastic process is supposed stationary.

1.3.3 Statistical Inference

For the stationary time series (xt, 1 ≤ t ≤ T ), the following inferential definitions and properties

can be found, for example, in Priestley (1981).

Mean Function

The mean function (in fact, a constant µt = µ) is estimated by

x̄T =
1

T

T∑
t=1

xt. (1.47)

Autocovariance Function

The autocovariance function can be estimated by

σ̂τ =
1

T

T−|τ |∑
t=1

(xt − x̄T )(xt+|τ | − x̄T ), |τ | = 0, 1, . . . , T − 1. (1.48)

In this expression, to obtain an unbiased estimator some authors prefer using 1/(T − |τ |) instead

of 1/T (see section 5.3.3 of Priestley [1981]); the expression (1.48) has lower mean square error.
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Autocorrelation Function

Thus, the autocorrelation function can be estimated by

ρ̂τ =
σ̂τ
σ̂0

, |τ | = 0, 1, . . . , T − 1. (1.49)

Spectral Density Function

To estimate the spectral density function, the following concept is defined:

Definition 23 The periodogram of (xt, 1 ≤ t ≤ T ) is defined as

IT (λ) =
1

2πT

∣∣∣∣∣
T∑

t=+1

xte
−itλ

∣∣∣∣∣
2

, λ ∈ [−π,+π]. (1.50)

As estimator of the spectral density function, the periodogram is asymptotically unbiased but

its variance does not decrease as n increases, so it is not consistent. There are several ways

of constructing —basically by smoothing the periodogram— consistent estimates of the spectral

density function.

Spectral Distribution Function

The integration, a sort of smoothing, provides a consistent estimate of the spectral distribution

function.

Definition 24 The integrated or cumulative periodogram of (xt, 1 ≤ t ≤ T ) is defined as

FT (λ) =
∫ λ
−π IT (h)dh, or, with a normalization,

FT (λ) =
1

cT

∫ λ

−π
IT (h)dh, λ ∈ [−π,+π], (1.51)

where cT =
∫ −π
−π IT (h)dh.

Fourier Frequencies Set

Previous definitions have been given for λ ∈ [−π,+π]. In practice, only a finite set of values

is considered for the estimation. The choice of the set of Fourier frequencies provides —among

others— some simplification in the algebra (see, for example, sections 6.1.3 of Priestley [1981] and

2.7 of Diggle [1990]):

S =

{
λj =

2πj

T
, j = −

[
T−1

2

]
, . . . ,−1, 0,+1, . . . ,+

[
T
2

]}
. (1.52)

In fact, these frequencies are related to efficient ways of computing the periodogram; for example,

the fast Fourier transform. Then,

IT (λj) =
1

2πT

∣∣∣∣∣
T∑

t=+1

xte
−itλj

∣∣∣∣∣
2

, λj ∈ S, (1.53)
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and the integrated periodogram takes the form FT (λj) =
∑j

i=1 IT (λi), or, in the normalized version,

FT (λj) =
1

cT

j∑
i=1

IT (λi), λi ∈ S, λj ∈ S, (1.54)

where now cT =
∑m

i=1 IT (λi), with m being the cardinal of S.

Positive Frequencies Only

Both functions f(λ) and IT (λ) are symmetric, so they (as well as set S) could have been defined

only in positive values in [0,+π].

1.3.4 Mathematical Framework

The sets of sequences of variables (random or not) take values in, symbolically, R∞ = R× R · · ·,
which is a linear space with the usual operations of sum and product with a real number (see

sections 2.1.1, 3.1.1, 3.3.1 and 3.4.1 of Kolmogórov and Fomı́n [1975]).

No more complex structure is required in this piece of work; note that we shall soon pass on

functional spaces and the periodograms make sense —as a mathematical object— for any set of

variables. Nonetheless, for 1 ≤ m <∞, the set of m-order summable sequences is defined as

lm =

{
(xt) ∈ R∞ |

∞∑
t=1

|xt|mdt <∞

}
. (1.55)

With the usual operations for sequences, the set lm is a linear space. With the distance

dm((x(1)

t ), (x(2)

t )) =

(
∞∑
t=1

|x(1)

t − x
(2)

t |m
)1/m

, (x(k)

t ) ∈ lm, k = 1, 2. (1.56)

lm forms the metric space (lm, dm(·, ·)). As this metric can be defined from the norm

‖(xt)‖m =

(
∞∑
t=1

|xt|m
)1/m

, (xt) ∈ lm. (1.57)

the pair (lm, ‖ · ‖m) is a normed space. These spaces are in general Banach spaces, and only the

case m = 2 is a Hilbert space, as the norm verifies the parallelogram condition and the following

inner product can be defined (see proposition 7 in appendix A.2):

〈(x(1)

t ), (x(2)

t )〉 =
∞∑
t=1

|x(1)

t x
(2)

t |, (x(k)

t ) ∈ l2, k = 1, 2. (1.58)

1.3.5 Addendum: Locally Stationary Processes

Some causes of nonstationarity —as trend, heteroscedasticity and seasonality— can be removed

by applying well-known transformations. A possible approach to nonstationary processes is based
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on this removal. The other frequently used approach consists in supposing local stationarity

and applying the usual techniques in narrow blocks. The literature includes several definitions

of “nonstationary processes”, as locally stationary random processes, semistationary processes,

quasi-stationary processes, piecewise stationary processes, etcetera. For a stochastic process, there

are many more ways of being nonstationary than stationary, and it seems that at least the local

stationarity assumption is necessary. Perhaps those definitions of Priestley (1965) and Dahlhaus

(1996) have been the most successful; see Dahlhaus’ paper for a comparison of both spectra. In

this section, the approach of Dahlhaus is chronologically presented from several papers.

As there is a dynamic change in time, in the nonstationary framework it is not possible to

separate the time and the frequency domains. The strategy of Dahlhaus started with a sort of

“spectral representation” definition:

Definition 25 (Dahlhaus [1996]) A sequence of stochastic processes (Xt,T 1 ≤ t ≤ T, T ≥ 1) is

called locally stationary with transfer function A0 and trend µ if such a representation exists

Xt,T = µ

(
t

T

)
+

∫ +π

−π
eiλtA0

t,T (λ)dξ(λ), (1.59)

where

(i) ξ(λ) is a stochastic process on [−π,+π] with ξ(λ) = ξ(−λ) and

cum{dξ(λ1), · · · , dξ(λk)} = η(
k∑
j=1

λj)hk(λ1, · · · , λk−1)dλ1 · · · dλk,

where h1 = 0, h2(λ) = 1, |hk(λ1, · · · , λk−1)| ≤ constk for all k, cum{· · ·} denotes the cu-

mulant of k-th order and η(λ) =
∑+∞

j=−∞ δ(λ+ 2πj) is the period 2π extension of the Dirac

delta function.

(ii) There is a constant c and a 2π-periodic function A : [0, 1]×R→ C with A(u,−λ) = A(u, λ)

and

supt,λ|A0
t,T (λ)− A(t/T, λ)| ≤ cT−1,

for all T .

A(u, λ) and µ(u) are assumed to be continuous in u.

Remark 11 The smoothness of A in u guarantees that the process (in fact, the sequence of

processes) has locally “stationary performance”.

Definition 26 (Dahlhaus [1996]) The (time-varying) spectral density of the process (sequence of

processes) is defined as:

f(u, λ) = A(u, λ)A(u, λ) = |A(u, λ)|2. (1.60)
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For these processes, Dahlhaus (1996) also defines the local covariance of lag k at time u, and gives

kernel estimates of it, as well as of the spectral density.

For the locally stationary processes, Dahlhaus and Polonik have more recently given a sort of

“MA(∞)-representation”, instead of the previous spectral-type definition. Let

V (g) = sup

{
m∑
k=1

|g(xk)− g(xk−1)|, where 0 ≤ x0 < . . . < xm ≤ m, m ∈ N

}
(1.61)

be the total variation of a function g on [0, 1], and for some κ > 0, let be

l(j) =

{
1, |j| ≤ 1,

|j|log1+κ|j| |j| > 1.
(1.62)

Definition 27 (Dahlhaus and Polonik [2006]) The sequence (Xt,T , 1 ≤ t ≤ T, T ≥ 1) is a locally

stationary process if it has the representation

Xt,T =
+∞∑
j=−∞

at,T (j)εt−j, (1.63)

where the εt are identically distributed with E(εt) ≡ 0, E(εsεt) = 0 for s 6= t, E(ε2t ) ≡ 1, and

satisfying the following conditions:

supt|at,T (j)| ≤ K

`(j)
(with K not depending on T ),

and there exist functions a(·, j) : (0, 1]→ R with

supu|a(u, j)| ≤ K

`(j)
,

supj

T∑
t=1

∣∣∣∣at,T (j)− a
(
t

T
, j

)∣∣∣∣ ≤ K,

V (a(·, j)) ≤ K

`(j)
.

This definition is more general than definition 25, since the parameter curves are allowed to have

jumps (but bounded variation in time direction). On the other hand, this representation can be

transformed easily into the previous time-varying spectral representation. The above conditions

are discussed in Dahlhaus and Polonik (2009).

Definition 28 (Dahlhaus and Polonik [2006]) Let (Xt,T ) be a locally stationary process with time-

-varying spectral density f(u, λ); then

σu,k =

∫ +π

−π
f(u, λ)eiλkdλ =

+∞∑
j=−∞

a(u, k + j)a(u, j) (1.64)

is the time-varying covariance of lag k at rescaled time u.
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Remark 12 The integral in (1.64) is deterministic, while the integral in (1.59) is stochastic.

Definition 29 (Dahlhaus and Polonik [2006]) Let (Xt,n) be a locally stationary process. The

function

f(u, λ) =
1

2π
|A(u, λ)|2 (1.65)

with

A(u, λ) =
+∞∑
j=−∞

a(u, j)e−iλj (1.66)

is the time-varying spectral density function.

1.4 Stochastic Functions

This type of data appears in many mathematical areas and has been used many times over. In the

theory of continuous-time univariate stochastic processes, (X(t), t ∈ [0, T ]), for fixed t a random

variable X(t) is obtained, while for a given event ω ∈ Ω, the trajectories (X(t)) are in a functional

space L, as represented through the application

X(t, ·) : Ω −→ L

ω → X(t, ω)
.

In this case, the characteristics of the space L depends on the properties of (X(t)); for example, for

the Wiener process the trajectories are —almost surely— continuous everywhere but differentiable

nowhere.

1.4.1 Models

The following definition is based on definition 1.1 of Ferraty and Vieu (2006). Let (Ω,F , P ) be a

probability space.

Definition 30 A stochastic function or functional random variable is a random variable, X =

X (ω), ω ∈ Ω, that takes values in a functional space L.

Let t ∈ [0, T ] be the independent variable of the elements of L, then X is in fact a bidimensional

function, X (ω, t), such that for fixed ω a deterministic function is obtained and for fixed t a

random variable is obtained (this point of view, instead of the previous definition, is preferred

when the dynamic performance is studied). For simplicity, X (ω, t) will be written as X , and X (t)

when the membership to the functional space L must be highlighted. The main interest will be

in the application:

X (t, ·) : Ω −→ L

ω → X (t, ω)
.
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As a final comment, let us notice that the classical analysis differentiation makes sense only when

ω is fixed. In this situation DiX (t) will be denoting the i-th derivative of the real function

X (t) = X (ω, t) of real variable t:

DiX (t) =
diX (t)

dti
, t ∈ [0, T ], (1.67)

even when both quantities X and DiX can be considered as stochastic; that is, in our framework

Di can be thought of as an operator in the functional space of nonstochastic functions L or,

equivalently, as an operator in the previous functional space of random functions.

Remark 13 The variable t is real and “deterministic” while, in general, ω is not. For some type

of random variables, the Stochastic Calculus provides definitions of the derivative operator with

respect to ω (see, for example, section 1.2 of Nualart [1995]).

For a general space L of functions, Ferraty and Vieu (2006) propose the following definitions

for the functional mean.

Definition 31 The mean function of the model X is defined as

µ(t) = E(X ) =

∫
Ω

X (ω, t)dP (ω), t ∈ [0, T ], (1.68)

where (Ω,F , P ) is the probability space.

Ferraty and Vieu (2006) also give definitions for the median function, the mode function and

estimators of them.

More generally, in the literature on random functions, concepts like (auto)correlation function,

mutual correlation function (between two functions) or spectral decomposition can be found.

In Practice

Let us notice that in this section we have not taken into account the fact that a function is

continuously observed in very few cases. In practice a function consists of a pair of vectors (t,X),

with t = (t1, t2, . . . , tT ) and X = (X1, X2, . . . , XT ), where ti is the time at which the Xi value is

taken. Moreover, t could be different in each different element in a sample of functions.

1.4.2 Functional Data

Definition 32 A functional datum χ(t) is an observation of a functional random variable X (ω).

For functional data, a huge amount of classical theory is available. The most important for

us is that on metric, normed and Hilbert spaces, and their topology and calculus. Of special

interest is the theory of linear spaces, where under good conditions (mainly numerability and

separability of the induced topological space; see appendix A.3) bases of functions can be used to

20



approximate or represent the elements of the spaces. Some frequently used bases are: the basis of

the monomials

{1, t, t2, t3, . . .}, (1.69)

the basis of the trigonometric functions

{1, sin(t), cos(t), sin(2t), cos(2t), . . .}, (1.70)

basis of the spline functions, basis of the wavelets, exponential and power bases, polynomial bases,

polygonal basis, and step-function basis or constant basis, among others.

The filtering techniques for functional data use some basis {ψi} and therefore work with the

multivariate coefficients c (see the linear combinations of section A.1). Note that in this case the

coefficients ci contain more information than that of mere scalars.

1.4.3 Statistical Inference

Let χ1(t), . . . , χe(t), . . . , χn(t) be a sample of functional data.

Definition 33 The sample mean function of a set of functions is defined as

χ̄(t) =
1

n

n∑
e=1

χe(t), t ∈ [a, b] ⊂ R, (1.71)

and it estimates µ(t).

Ramsay and Silverman (2006) also give definitions of sample concepts like: covariance function,

correlation function, cross-covariance function and cross-correlation function.

Remark 14 Although the sample mean can be computed in any linear space of functions, the

ideas of approximation and convergence require an additional —stronger— analysis concepts, such

as norm or inner product.

Remark 15 Our proposals use the sample mean as an inference tool. A worthwhile observation

is that we are allowed to use this representative function due to the smoothness of our functional

data, since this function does not reflect, in general, the characteristics of rough data.

1.4.4 Mathematical Framework

Given I ⊂ R compact, the set of continuous functions defined on I is denoted by

C(I) = {χ : I → R | χ is continuous in t} . (1.72)

For l ∈ N \ {0}, a more restrictive set is defined for differentiable functions,

Cl(I) =
{
χ : I → R | ∃Dlχ and Dlχ ∈ C(I)

}
. (1.73)
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Finally, for m ∈ N \ {0} the set of m-order integrable functions is defined as

Lm(I) =

{
χ : I → R |

∫
I

|χ(t)|mdt <∞
}
, (1.74)

where the previous integration is usually the Lebesgue integral.

With the operations for functions, the three previous sets are linear spaces. Moreover, it holds

that

Proposition 4 For any finite l ∈ N \ {0} and m ∈ N \ {0},

Cl(I) ⊂ C(I) ⊂ Lm(I). (1.75)

Proof.

The first inclusion holds by definition. In the case of the second, since for a given χ(t) ∈ C(I) a

finite constant exists such that supt∈[0,T ]|χ(t)| ≤M then∫
I

|χ(t)|mdt ≤ ν(I)Mm <∞

where ν(I) is the Lebesgue measure of I.

�

Thus, the following statements are given for the more general spaces of integrable functions, since

the other two subsets are closed —as linear subspaces— and they inherit the structures.

The set Lm(I) with the distance

dm(χ1, χ2) =

(∫
I

|χ1(t)− χ2(t)|mdt
)1/m

, χk ∈ Lm(I), k = 1, 2. (1.76)

form the metric space (Lm(I), dm(·, ·)). As this metric can be defined from the norm

‖χ‖m =

(∫
I

|χ(t)|mdt
)1/m

, χ ∈ Lm(I), (1.77)

the pair (Lm(I), ‖ · ‖m) is a normed space. These spaces are in general numerable and separable

Banach spaces, and only the case m = 2 is a Hilbert space, as its norm verifies the parallelogram

condition and can be defined (see proposition 7 in appendix A.2) the inner product

〈χ1, χ2〉 =

∫
I

|χ1(t)χ2(t)|dt, χk ∈ L2(I), k = 1, 2. (1.78)

In general, the functional space determines the allowed operations: proximity, types of conver-

gence, continuity or geometry for example, projection, angle or orthogonality (see sections 2.1.1,

3.1.1, 3.3.1 and 3.4.2 of Kolmogórov and Fomı́n [1975]).

Expression (1.68) needs the L1(I) space while expression (1.71) needs just a linear space

structure (both spaces need an overlapped metric structure for the convergence). More generally,

Ferraty and Vieu (2006) frequently base definitions and model adjustements on optimization prob-

lems, so they usually work in “good” Banach spaces; on the other hand, Ramsay and Silverman

(2006) need the more restrictive Hilbert space structure of (L2(I), 〈·, ·〉), as they use the inner

product to compute the coefficients of fitted models.
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Our Functional Spaces

In this document, the domain of the functions is compact (in R with the Borel topology): in

chapter 2 the interval is I = [−π,+π] (or the joint of g intervals like this), while in chapter 3 it

is I = [0, T ]. Functions are continuous in t or composed of continuous parts: in chapter 2, due to

the integrability of the periodogram and, in chapter 3, due to the differentiability assumptions.

As a distance measurement between two functions we have taken d1 (defined by [1.76] with

m = 1), so the metric or normed space of functions into which we shall be working are: the

spaces (C(I), ‖ · ‖1) or (L1(I), ‖ · ‖1) in chapter 2 and the more restrictive spaces
(
Cl(I), ‖ · ‖1

)
in

chapter 3. Some other distance could be considered, and in general there is no “best” one. For

example, with the usual distance of L2, big differences between functions would be highlighted

and so would be the corresponding values of the independent variable; this distance is usually

preferred to develop theory since the square power is a more manageable way of avoiding the sign

than the absolute value.

1.4.5 Addendum: Functional Depth

The statistical concept of depth is a measurement of the “centrality” of each element inside a

sample. This implies, for example, that in a set of points in Rm,m ∈ N \ {0}, the closer a point

is to the mass center, the deeper it is. The same general idea applies to other types of data,

including functions. Different definitions of depth for functions can be given. In this section we

will describe and use the definitions proposed in López-Pintado and Romo (2009).

Band Depth

LetG(χ(t)) = {(t, χ(t)) | t ∈ [a, b]} denote the graph in R2 of a function χ(t); let χe(t), e = 1, . . . , n,

be a sample of functions; then a subset of these functions, χej(t), j = 1, . . . ,m, determines the

band in R2 defined as

B(χe1(t), . . . , χem(t)) = {(t, y) | t ∈ [a, b], min
r=1,...,m

χer(t) ≤ y ≤ max
r=1,...,m

χer(t)}. (1.79)

For any function χ(t), the quantity

BD(j)

n (χ(t)) =

(
n

j

)−1 ∑
1≤e1<e2<...<ej≤n

I{G(χ(t)) ⊂ B(χe1(t), . . . , χej(t))}, j ≥ 2, (1.80)

expresses the proportion of bands, determined by j different curves, χe1(t), . . . , χej(t), containing

the graph of χ(t) (the indicator function takes the value I{A} = 1 if A occurs and I{A} = 0

otherwise).

Definition 34 For functions χe(t), e = 1, . . . , n, the band depth of any of these curves χ with

respect to the sample is

BDn,J(χ(t)) =
J∑
j=2

BD(j)

n (χ(t)), 2 ≤ J ≤ n. (1.81)
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Figure 1.1: Example of functions and their band
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If X is a stochastic process and Xe(t), e = 1, . . . , n, are copies of it, the population versions of

these depth indexes are, respectively,

BD(j)(X ) = P{G(X ) ⊂ B(Xe1 , . . . ,Xej)}, j ≥ 2, (1.82)

and

BDJ(X ) =
J∑
j=2

BD(j) =
J∑
j=2

P{G(X ) ⊂ B(Xe1 , . . . ,Xej)}, J ≥ 2. (1.83)

Modified Band Depth

A more flexible notion of depth is also defined in López-Pintado and Romo (2009). The indicator

function in definition (1.80) is replaced by the length of the set where the function is inside the

corresponding band. For any function χ(t) of χe(t), e = 1, . . . , n, and 2 ≤ j ≤ n, let

Aj(χ(t)) ≡ A(χ(t);χe1(t), . . . , χej(t))

≡ {t ∈ [a, b] | min
r=1,...,j

χer(t) ≤ χ(t) ≤ max
r=1,...,j

χer(t)} (1.84)

be the set of points in the interval [a, b] where the function χ(t) is inside the band. If ν is the

Lebesgue measure on the interval [a, b], νr(Aj(χ(t))) = ν(Aj(χ(t)))/ν([a, b]) is the “proportion of

time” that χ(t) is inside the band.

The quantity

MBD(j)

n (χ(t)) =

(
n

j

)−1 ∑
1≤e1<e2<...<ej≤n

νr(A(χ(t);χe1(t), . . . , χej(t))), 2 ≤ j ≤ n, (1.85)

is a modified version of BD(j)
n .

Notice that if χ(t) is always inside the band, the measure νr(Aj(χ(t))) is 1 and this generalises

the definition given in (1.80).
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Definition 35 The modified band depth of any of these curves χ with respect to the sample is

MBDn,J(χ(t)) =
J∑
j=2

MBD(j)

n (χ(t)), 2 ≤ J ≤ n. (1.86)

If Xe, e = 1, . . . , n, are independent copies of the stochastic process X , the population versions

of these depth indexes are, respectively,

MBD(j)(X ) = E
(
νr(A(X ;Xe1 , . . . ,Xej))

)
, 2 ≤ J ≤ n, (1.87)

and

MBDJ(X ) =
J∑
j=2

MBD(j)(X ) =
J∑
j=2

E
(
νr(A(X ;Xe1 , . . . ,Xej))

)
, 2 ≤ J ≤ n. (1.88)

In chapter 2 we have used the value J = 2, since it is computationally fast and the modified band

depth is very stable in J , providing similar center-outward order in a collection of functions (see

López-Pintado and Romo [2006, 2009]).

Robust Inference: Trimmed Mean

Let χ(e)(t), e = 1, . . . , n be a sample of functions ordered by decreasing depth, then

Definition 36 The sample α-trimmed mean function is defined as

α

χ (t) =
1

n− [nα]

n−[nα]∑
e=1

χ(e)(t), (1.89)

where [·] is the integer part function.

A kind of “median function”, in the sense of the “deepest”curve, is obtained with the previous

expression just considering α = (n − 1)/n. Nevertheless, the α-trimmed mean is robust, like

the median, and summarizes the general performance of the functions, like the mean. In our

simulation and real data exercises, a value of α = 0.2 is used. It means that for each group only

the 80% deepest data are considered, while the remaining 20% are left out.

1.5 The Classification Problem

It is frequently necessary to study a set of —abstract or real— objects in order to characterise

their heterogeneity, that is, to identify the underlying structure of subsets. This task is known

as classification, and consists in finding some “properties” —theoretical or approximated— that

characterise the differences among subsets. As the elements of each subset must be similar, some

kind of “distance”, based on the characterising properties, is necessary to evaluate the proximity —

between two elements, an element and a group or two groups— and, finally, to apply a “criterion”
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for determining the underlying structure. In the rest of this section, a general symbolic notation

is used to locate these concepts of “property”, “distance” and “criterion”.

When there is not previous knowledge about the structure, the problem is termed unsupervised

classification —or clustering— and even the number of subsets is usually unknown and has to

be determined. If the structure of subsets is indicated by the membership of the elements in a

subset (through labels), the problem is named supervised classification. The classification that we

address here is of this latter kind.

1.5.1 Theoretical Rule

Let P (k), k = 1, . . . , K be different and disjoint populations of theoretical mathematical objects,

where “disjoint” means that any element belongs to only one population, and let c(·) be a property

characterising these populations as much as possible; then the classification problem consists in

applying a criterion to decide to which population a new element E belongs to, by using the

information provided by its property c(E). It is important to notice that the choice of c(·) and c(E)

usually depends on the information available or the information that we are capable of knowing.

Let us assume that c(·) does characterise the populations in the sense that it is different and unique

for each group. Then, it seems natural for the election of c(E) to be as similar as possible to c(·),

that is, to capture as much “inherited” information as possible. In the following, it is supposed

that the definitions of c(E) and c(·) depend on one another.

Separable Populations

Let us consider the unrealistic case in which the quantity c(E) can contain the same information

as c(·), that is, characterizing information. We shall say that these are separable populations.

In this case, we can know the exact information of the element and the populations, so the

classification is not a problem but a mere deterministic application, C : ∪Kk=1P
(k) → {1, 2, . . . , K}

such that:

C(E) =


k = 1 if c(E) = c(1)

k = 2 if c(E) = c(2)

...
...

k = K if c(E) = c(K)

(1.90)

The information contained in c(E) implies that the populations are separable.

Nonseparable Populations

In the previous case, c(E) could contain as much information as c(·). Nevertheless, in most situations

it happens that c(E) provides useful information but not sufficient information, in general, for a

perfect classification. We shall say that these are nonseparable populations.
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For nonseparable populations, such a naive rule as (1.90) is not available, and some elements

cannot be assigned; this can be represented as C : ∪Kk=1P
(k) → {1, 2, . . . , K, ∅} such that:

C(E) =



k = 1 if c(E) = c(1)

k = 2 if c(E) = c(2)

...
...

k = K if c(E) = c(K)

k = ∅ otherwise

, (1.91)

where the element E is assigned to the empty set if it is not equal to one, and only one, model.

In this case the rule cannot assign with certainty the element to one population.

In the following we shall consider that c(E), for E belonging to any of the populations, cannot

contain in general characterizing information, as in an other case there would be no classification

problem. That is, we shall consider the case of nonseparable populations.

1.5.2 Sample Rule

Since in general the theoretical populations are defined to model the reality, the exact information

c(k) is not known, and the previous rule has to be substituted by the empirical version, Ĉ :

∪Kk=1P
(k) → {1, 2, . . . , K, ∅}.

Ĉ(E) =



k = 1 if c(E) ≈ ĉ(1)

k = 2 if c(E) ≈ ĉ(2)

...
...

k = K if c(E) ≈ ĉ(K)

k = ∅ otherwise

(1.92)

where the estimates ĉ(k) are constructed from samples of the populations. In practice, the element

E is assigned to the closest population. Again, the element is assigned to the empty set if it is

not similar to one, and only one, model. In this case the classification rule is less certain than the

previous C(·) and a stochastic component is added by the use of samples.

Some Estimators ĉ(·)

If E(k)

1 , . . . , E(k)
nk

is a sample of the k-th population, usually ĉ(k) is such that

ĉ(k) =
1

nk

nk∑
e=1

c
E
(k)
e
, (1.93)

where the term c
E
(k)
e

, of the e-th element E(k)
e of the k-th sample, has both approximative and

stochastic characters. The average (1.93) is the sample version of the population quantity c(k) =

E(cE(k)), where E(k) follows the theoretical functional distribution of the k-th population and cE(k)

is its property.
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Nonetheless, before using expression (1.93) it is necessary to be sure that such a mix of infor-

mation (the sample mean) makes sense and is useful. For example, if the property of the popula-

tions were the range of values (e.g. of continuous random variables), averaging would be a quite

inappropriate way of mixing the information. A more proper estimator would be

ĉ(k) = [mine=1,...,nk
{c

E
(k)
e
},maxe=1,...,nk

{c
E
(k)
e
}] (1.94)

1.5.3 Our Classification Frameworks

Minimizing the Distance

The role of the “similarity of the property” has been highlighted in the previous classification

criteria, but this similarity (equality and approximation) has to be measured with a distance. The

theoretical criteria are, in this case, equivalent to

k = argmin{1,···,K} {d(c(E), c
(k))} , (1.95)

since all the values d(c(E), c
(k)), k = 1, . . . , K are constant but one. Then, it seems natural assigning

a new element to the population minimizing the distance to the group representative; that is, the

sample criteria could be substituted by

k = argmin{1,···,K} {d(c(E), ĉ
(k))} . (1.96)

Nevertheless, the exact theoretical information c(E) is usually unknown due to different causes,

for example measurement and calculation errors, partial knowledge or computational aspects. In

this situation, the approximation c̃(E) is available. So happens with d̃(·, ·), which denotes the fact

that, in general, the exact theoretical distance cannot be computed.

The previous general objects will take the following mathematical meaning for the classification

methods proposed in chapters 2 and 3:

Time Series Method

c(k) Curve formed from the spectral distribution function models

c(E) Curve formed in the same way for the time series E

d(·, ·) Natural distance of the functional space L1

ĉ(k) Empirical curve estimate formed from integrated periodograms

c̃(E) Curve formed from the integrated periodogram of the series E

d̃(·, ·) Approximation of the previous distance

Ĉ(E) Criterion such that k = argmin{1,2}

{
d̃(c̃(E), ĉ

(k))
}
.
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Functional Data Method

c(k) Univariate variable Y (·) formed from the functional models

c(E) Univariate variable formed in the same way for the function E

d(·, ·) Natural distance of R
ĉ(k) Empirical value y(k) formed from samples

c̃(E) Value y(E) formed from the curve E

d̃(·, ·) Approximation of the previous distance

Ĉ(E) Criterion such that k = argmin{1,2}

{
d̃(c̃(E), ĉ

(k))
}
.

1.5.4 Stochastic Rule

So far we have relegated some difficult or uncomfortable decisions —e.g. nonseparable populations—

to the “otherwise” case of the classification rules. On the other hand, the rules tried to assign a

new element with certainty, instead of with partial uncertainty. Finally, the stochastic character

of the rule (1.92) has been mentioned only implicitly, while the estimators are random quantities.

The previous enunciations of the rules highlighted the similarity of the properties and the certainty

in the classification.

For several reasons, and sometimes for necessity, it is usually more convenient an enunciation

in terms of probabilities:

Ĉ(E) =



k = 1 with probability p1(c(E), ĉ
(1), ĉ(2), . . . , ĉ(K))

k = 2 with probability p2(c(E), ĉ
(1), ĉ(2), . . . , ĉ(K))

...
...

k = K with probability pK(c(E), ĉ
(1), ĉ(2), . . . , ĉ(K))

k = ∅ with probability p0(c(E), ĉ
(1), ĉ(2), . . . , ĉ(K))

, (1.97)

with
∑K

k=0 pk(c(E), ĉ
(1), ĉ(2), . . . , ĉ(K)) = 1. Classifying an element E in terms of proper probabilities

is more informative than not classifying it. The similarity and distances can be used to calculate

these probabilities, but this is a complex task out of the scope of this discussion. While the

election of the probabilities may be simple for separable populations, how to calculate them may

be quite complex for nonseparable populations. Finally, let us notice that it is easy to obtain the

rule (1.92) as a particular case of this rule (1.97).

1.5.5 Asymptotic Behaviour

If the properties c(k) and c(E), the distance d(·, ·), and the estimates ĉ(k) are properly defined, the

sample classification rule Ĉ tends to provide the same classification as the theoretical rule C:

Ĉ −→ C

nk→∞
(1.98)
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This means that the rule Ĉ converges to C in the sense that asymptotically Ĉ tends to classify the

element E as C would do. Notice that the election of ĉ(k) should depend on the previous election

of c(k).

Both relations = and≈ can be expressed by the distance d(·, ·), and it can be written informally:

d(c(E), c
(k)) ≤ d(c(E), ĉ

(k)) + d(ĉ(k), c(k)),

and, analogously,

d(c(E), ĉ
(k)) ≤ d(c(E), c

(k)) + d(c(k), ĉ(k)).

Thus, when d(ĉ(k), c(k)) → 0 it is concluded, on the one hand, that d(c(E), c
(k)) ≤ lim{d(c(E), ĉ

(k))}
and, on the other hand, that lim{d(c(E), ĉ

(k))} ≤ d(c(E), c
(k)), so

lim{d(c(E), ĉ
(k))} = d(c(E), c

(k)). (1.99)

Several samples (the data) may not be separable due to the fact that perhaps there are elements

that could have been generated by different models and the information available from the property

does not characterise the membership. Asymptotically, what usually happens is that the unlimited

amount of information in the training samples —of the supervised classification framework—

usually facilitates “the separability”. Then, in spite of the uncertainty and random components,

a classification could be “asymptotically perfect”, where perfect must be understood in the sense

that, for separable populations,
p(Ĉ(E) = 1) = 1 if E ∈ P (1)

p(Ĉ(E) = 2) = 1 if E ∈ P (2)

...
...

p(Ĉ(E) = K) = 1 if E ∈ P (K)

, (1.100)

and, for nonseparable populations,

p(Ĉ(E) = 1) = 1 if E ∈ P (1) ∩ {∪k 6=1P
(k)}c

p(Ĉ(E) = 2) = 1 if E ∈ P (2) ∩ {∪k 6=2P
(k)}c

...
...

p(Ĉ(E) = K) = 1 if E ∈ P (K) ∩ {∪k 6=KP (k)}c

p(Ĉ(E) = 1) = p(1)

12 if E ∈ P (1) ∩ P (2) ∩ {∪k 6=1,2P
(k)}c

p(Ĉ(E) = 2) = p(2)

12 if E ∈ P (1) ∩ P (2) ∩ {∪k 6=1,2P
(k)}c

...
...

, (1.101)

where the superindex c denotes the complementary set and, in the place of the second set of vertical

points, all possible intersections among the populations must be considered (only the case of the

intersection of the two first populations have been included). The election of the probabilities can

follow lots of different criteria, e.g. the probabilities being proportional to the likelihood of having

been generated by the model of each class.

How close to this “perfect” performance the rule C is depends on its own definition or design.
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1.5.6 Theoretical Misclassification Rates

Let the populations be P (k), k = 1, . . . , K, an element be E ∈ ∪kP (k) and the classification rule

be C : ∪Kk=1P
(k) → {1, 2, . . . , K}. Let us define the successes E (k) = {C(E) 6= k} ∩ {E ∈ P (k)},

k = 1, . . . , K; that is, E (k) is the success misclassifying an element of the k-th population (chosen

at random). By using the conditional probability definition, the probability of E (k) is

p(E (k)) = p({C(E) 6= k} ∩ {E ∈ P (k)}) = p({C(E) 6= k} | {E ∈ P (k)}) · p({E ∈ P (k)}). (1.102)

Now the success misclassifying an element (chosen at random) is written, from the previous

disjoint successes, as

E = ∪Kk=1E (k), (1.103)

so the probability of misclassification can be calculated as

p(E) =
K∑
k=1

p(E (k)) =
K∑
k=1

p({C(E) 6= k} | {E ∈ P (k)}) · p({E ∈ P (k)}). (1.104)

For the particular case of two populations (K = 2),

p(E) = p({C(E) = 2} | {E ∈ P (1)}) · p({E ∈ P (1)})

+p({C(E) = 1} | {E ∈ P (2)}) · p({E ∈ P (2)}). (1.105)

Sometimes the quantities involved in this expression can be calculated easily and even without

calculations; other times, more or less difficult calculations are necessary. See the models of the

simulations exercises in section 3.3.

1.5.7 Example

To illustrate the previous frameworks, let us consider random variables following discrete uniform

laws with different and disjoint (nonoverlapping) set of values; these populations are different and

disjoint (any variable follows only one of the laws). The groups are characterised by the property

set of values. For a new variable the most similar information to the set of values is the single value

of the variable, which is also characterising information. Let us measure the proximity of a single

value to a set of values through the minimum of the absolute values of the distances from the single

value to the values of the set. Under the knowledge of all the previous information, the criterion

(1.90) can be applied without problems. Nevertheless, several complexities arise immediately. On

the one hand, we have some limitation in managing numbers and operations, since we can work

with a high but limited level of precision; this implies that approximations (≈) must be considered

instead of equalities (=) in criterion (1.90). On the other hand, when the property set of values of

the populations is not known, it is necessary to use some estimator of it (notice that in this case

an expression like (1.93) makes no sense). If the estimator of the set of values is a record of the
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values of a sample and the approximations are good enough, asymptotically there will be enough

information to classify as stated in (1.100).

On the other hand, if the sets of values of these previous discrete uniform laws are not disjoint,

that is, they overlap, then we are in the case of nonseparable populations. The main difference

is that the property single value of the variable is not characterising, and some rule of the form

(1.91) must be considered at the beginning. The technical problems mentioned in the previous

paragraph would also remain in this case. Finally, asymptotically and under good conditions a

“perfect“ classification would take the form (1.101).
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Chapter 2

Time Series Classification

Summary: We propose using the integrated periodogram to classify time series. The

method assigns a new element to the group minimizing the distance from the element

integrated periodogram to the group mean of integrated periodograms. Local compu-

tation of these periodograms allows the application of this approach to nonstationary

time series. Since the integrated periodograms are functional data, we apply depth-

-based functional techniques to make the classification robust. The method provides

small error rates with both simulated and real data, and shows good computational

performance1.

Key words : time series, classification, integrated periodogram, depth.

2.1 Introduction

Classification of time series is a statistical subject with many applications. Time series can be

studied from both time and frequency domains; while the former uses position or time as an index,

the latter involves the frequency. With short stationary series, a time domain approach based on

usual multivariate techniques can be applied. However, a frequency domain approach is more

appropriate with long time series because it provides a reduction of the dimension. Moreover,

frequency domain is particularly important for nonstationary series (Huang et al. [2004]). There

are many studies on classification methods for stationary processes in both domains (see references

in chapter 7 of Taniguchi and Kakizawa [2000]). Several authors have addressed the discrimination

analysis of nonstationary time series: Hastie et al. (1995), Shumway (2003), Huang et al. (2004),

Hirukawa (2004), Sakiyama and Taniguchi (2004), Chandler and Polonik (2006) and Maharaj and

Alonso (2007), among others. Caiado et al. (2006) define a measure based on the normalized

periodogram and use it for both clustering and classifying between stationary and nonstationary

time series. Our procedure uses the integrated periodograms to classify time series and therefore

1MATLAB code is available at http://www.Casado-D.org/edu/publications.html.
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is a frequency domain approach.

Since the integrated periodogram can be seen as a function, we shall use specific techniques for

functional data analysis. There are several studies on the statistical analysis of functional data and,

particularly, on their classification. For example, a penalized discriminant analysis is proposed

in Hastie et al. (1995); it is adequate for situations with many highly correlated predictors, like

those obtained by discretizing a function. Nonparametric tools to classify a set of curves have

been introduced in Ferraty and Vieu (2003), where authors calculate the posterior probability of

belonging to a given class of functions by using a consistent kernel estimator. A new method for

extending classical linear discriminant analysis to functional data has been analysed in James and

Hastie (2001); this technique is particularly useful when only fragments of the curves are observed.

The problem of unsupervised classification or clustering of curves is addressed in James and Sugar

(2003), who elaborate a flexible model-based approach for clustering functional data; it is effective

when the observations are sparse, irregularly spaced or occur at different time points for each

subject. In Abraham et al. (2003) unsupervised clustering of functions is considered; they fit

the data by B-splines and partition is done over the estimated model coefficients using a k-means

algorithm. In a related problem, Hall et al. (2001) explore a functional data-analytic approach

to performing signal discrimination. Nonetheless, many of these procedures are highly sensitive

to outliers. A natural idea for classifying functions is to minimize the distance between the new

curve and a reference one from the group. The approach presented in this chapter follows this

idea. As a reference function of each group, we shall take the mean of the integrated periodograms

of its elements. Later, this curve will be substituted by a more robust representative.

The notion of statistical depth was first introduced for multivariate data. It measures the

“centrality” or “outlyingness” of an observation within a set of data (or with respect to a proba-

bility distribution), providing a criterion for ordering observations from center-outward. This idea

of depth has been extended to functional data in several papers (see, e.g. Fraiman and Muniz

[2001] and López-Pintado and Romo [2009]). Moreover, López-Pintado and Romo (2006) have

used this concept to classify curves. Since robustness is an interesting feature of the statistical

methods based on depth, we have applied these ideas to add robustness to our time series classi-

fication procedure. Their method considers the α-trimmed mean as a reference curve of each

group, which is defined as the average of the 1− α proportion of deepest curves from the sample;

in other words, it leaves 100α% of the least representative data curves out.

The chapter is organized as follows: in section 2, we include some definitions and explain

how depth can be used to make the method robust; in section 3, we describe the classification

algorithm; the next two sections, 4 and 5, show the performance of the procedure with simulated

and real data, respectively; a brief summary of conclusions is given in section 6.
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2.2 The Classification Method

A first and important step in our classification proposal is to transform the time series problem

into a functional data problem by considering the integrated periodogram of each time series.

2.2.1 The Integrated Periodogram

The Fourier transform of the correlation function of an absolutely summable stochastic pro-

cess is known as spectral density or spectrum; its integration provides the spectral distribution

function or cumulative spectrum. Let (Xt) be a stationary process with autocovariance func-

tion σs = cov(Xt, Xt−s) satisfying
∑+∞

s=−∞ |σs| < +∞. Then the spectral density can be ex-

pressed in terms of the autocorrelation as f(λ) =
∑+∞

s=−∞ ρs exp(−2πisλ), and it holds that

ρs =
∫ +1/2

−1/2
exp(2πisλ)dF (λ), where F (·) is the spectral distribution function.

The periodogram is the sample version of the population concept of spectral density, and it

expresses the contribution of the frequencies to the variance of a series. Let (x(k)

t ) = (x(k)

1 , . . . , x(k)

T )

be a time series of the k-th population; the periodogram I (k)

T is obtained as indicated in (1.53):

I (k)

T (λj) =
1

2πT

∣∣∣∣∣
T∑
t=1

x(k)

t e
−itλj

∣∣∣∣∣
2

, λj ∈ S. (2.1)

Its cumulative version is the integrated periodogram F (k)

T calculated as indicated in (1.54), that

is,

F (k)

T (λj) =
1

cT,k

j∑
i=1

I (k)

T (λi), λj ∈ S, λi ∈ S, (2.2)

where cT,k =
∑m

i=1 I
(k)

T (λi). The normalized version of the cumulative periodogram takes into

account the shape of the curves more than the nonnormalized version, which also considers the

scale.

In our case, we propose using the normalized version when the graphs of the functions of the

different groups tend to intersect and there is no clear scale pattern, and using the nonnormalized

one when the graphs do not tend to intersect.

Some of the advantages of using the integrated periodogram are: it is a nondecreasing and

quite smooth curve; it has good asymptotic properties (for example, while the periodogram is an

asymptotically unbiased but inconsistent estimator of spectral density, the integrated periodogram

is a consistent estimator of spectral distribution); although, in practice, for stationary processes

the integrated spectrum is usually estimated via the estimation of the spectrum, from a theoret-

ical point of view, spectral distribution always exists, whereas spectral density exists only under

absolutely continuous distributions (see theorem 2); finally, from a theoretical point of view, the

integrated spectrum completely determines the stochastic processes.

Since the periodogram is defined only for stationary series, in order to be able to classify

nonstationary time series, we shall consider locally stationary series. With this assumption we
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can split them into blocks, compute the integrated periodogram of each block and merge these peri-

odograms into a final curve; hence, we approximate the locally stationary processes by piecewise

stationary processes. In figure 2.3(b), we illustrate our blockwise spectral distribution estimation

of the locally stationary process spectrum. It is worth mentioning that there are two opposite

effects as a consequence of splitting: one is that the narrower the blocks are, the closer we are to the

locally stationary assumption; the other one is that when the length of the blocks decreases, the

quality of the integrated periodogram as an estimator of the integrated spectrum also decreases.

2.2.2 Classifying Functions

When functions need to be classified, a possible criterion is to assign them to the group minimizing

some distance from the new data to the group. In our context this criterion means that we classify

new series in the group minimizing the distance between the integrated periodogram of the series

and a reference curve from the group. As a reference function of each group, we take the mean

of its elements, as it summarizes the general performance of the sample. Let χ(k)
e (λ) be the joint

integrated periodograms of the blocks for the e-th series —out of nk— in group k. The mean is

defined as:

R(k)(λ) = χ̄(k)(λ) =
1

nk

nk∑
e=1

χ(k)

e (λ). (2.3)

As a distance measurement between two functions we have taken the distance given by expres-

sion (1.76) with m = 1. Notice that the functions we are working with, that is, the integrated

periodograms, belong to the L1[−π,+π] space.

2.2.3 Robustness

Our classification method depends on the group reference curve to which the distance is measured.

The mean of a set of functions is not robust to the presence of outliers. Then robustness can be

added to the classification procedure by using a robust reference curve. Instead of considering

the mean of the integrated periodograms of all the elements of the group, we shall consider the

α-trimmed mean, where only the deepest elements are averaged. The trim adds robustness by

making the reference curve more resistant to the presence of outliers. In this section, we describe

the concept of depth for functional data given by López-Pintado and Romo (2009). Then we

propose a robust version of our classification algorithm.

New Reference Function

In order to add robustness, we shall take the group α-trimmed mean of its elements

R(k)(λ) =
α

χ (k)(λ) =
1

nk − [nkα]

nk−[nkα]∑
e=1

χ(k)

(e)(λ), (2.4)
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where [·] is the integer part function and χ(k)

(e)(λ), e = 1, . . . , nk, is the k-th sample of functions

ordered by decreasing depth.

2.3 Algorithms

We can establish the classification algorithms with the above definitions:

Algorithms 1 and 2

Let (xt)
(k)
e , e = 1, . . . , nk, be a sample containing nk time series from population P (k),

for k = 1, 2; the classification method includes the following steps:

1. From time series to functions. To this end, each time series is split into

G blocks, then a curve associated with each series is constructed by merging the

integrated periodograms of the blocks. Concretely, consider {χ(k)
1 (λ), . . . , χ(k)

nk
(λ)},

k = 1, 2, where χ(k)
e (λ) = (F (k)

1,e (λ) . . . F (k)

G,e(λ)) and F (k)
g,e(λ) is the integrated peri-

odogram of the g-th block of the e-th series of sample k.

2. The reference functions R(k). Calculate the curve of each group: R(k)(λ) =

χ̄(k)(λ), in algorithm 1, or R(k)(λ) =
α

χ (k)(λ), in algorithm 2, k = 1, 2.

3. The allocation of new series. Let χ(λ) be the associated curve of a new series

(xt), that is χ(λ) = (F1(λ) . . . FG(λ)); then (xt) is classified as{
k = 1 if d(χ(λ),R(1)(λ)) < d(χ(λ),R(2)(λ))

k = 2 otherwise
. (2.5)

Remark 16 An important point of our approach is that it can be interpreted as the fit to locally

stationary processes with piecewise stationary processes (see figure 2.3).

Remark 17 To apply the algorithm to stationary series, G can be set equal to 1. We have used

a dyadic splitting of the series into blocks in the simulation and real data computations, that is,

g = 2n, n = 0, 1, . . .; but the implementation with blocks of different lengths, as could be suggested

by visual inspection of data, is also possible.

Remark 18 The same methodology that we propose in this thesis could be implemented using

different classification criterion between curves, reference function —or functions— of each group,

or distance between curves.

Remark 19 The same algorithm could be implemented using a different functional depth.

Remark 20 The previous classification criteria can be expressed as

k = argmin{1,2} {d(χ(λ),R(k)(λ))} . (2.6)
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Code

In the link given on the first page of this chapter, we have made some code available. It implements

our algorithms, methods DbC and DbC -α. There are two main scripts, one for simulation exercises

and another for the application to real data; the former runs a Monte Carlo loop, while the latter

adds a leave-m-out cross-validation partition of the real data (the user can choose the value of m,

possibly different for each group).

Our code provides previous optional graphics that are based on an additional and independent

run of the loop; these graphics use both training and testing data and have a useful prospective

and descriptive character.

The code is fast (a particular robustifying process accelerates the computes with DbC -α) and

easy to execute and extend. The reader can reproduce, apply or extend our results and graphics

easily. A helping file is included with the code.

2.4 Simulation Results

In this section, we evaluate —based on simulation studies— the two algorithms that we have

introduced and, as a reference, the method proposed in Huang et al. (2004). The results ob-

tained with our two algorithms and Huang et al.’s (2004) method are denoted by DbC, DbC -α

and SLEXbC, respectively. Ombao et al. (2001) introduced the SLEX (smooth localized complex

exponentials) model of a nonstationary random process, which is based on a set of Fourier-type

bases that are at the same time orthogonal and localized in both time and frequency domains.

The method of Huang et al. (2004) uses SLEX for classification of nonstationary time series.

In a first step, they select from SLEX a basis explaining the difference between the classes of

time series as well as possible. In a second step, they construct a discriminant criterion that

is related to the SLEX spectra of the different classes: a time series is assigned to the class

minimizing the Kullback-Leibler divergence between the estimated spectrum and the spectrum

of the class. For the SLEXbC method, we have used an implementation provided by the au-

thors (http://www.stat.uiuc.edu/∼ombao/research.html). To select the parameters for this

method, we have carried out a small optimization for each simulation exercise and the results were

similar to the values recommended by the authors.

We have used the same models as the ones proposed in Huang et al. (2004). For each model,

we have run the steps 1000 times. We generate training and testing sets of each class. Training sets

have the same sizes (sample size and series length) as the ones used in Huang et al. (2004). The

testing sets always contain 10 series of length determined in each particular simulation exercise.

The performance of the different methods are based on exactly the same simulated data.

Simulation Exercise 1. We compare an autoregressive process of order one X (1)

t
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with a Gaussian white noise X (2)

t :

X (1)

t = φX (1)

t−1 + ε(1)t t = 1, . . . , T

X (2)

t = ε(2)t t = 1, . . . , T

where εt are i.i.d. N(0, 1), independently generated for the two models. Each training

data set has n = 8 series of length T = 1024. Six comparisons have been run, with

the parameter φ of the AR(1) model taking the values −0.5, −0.3, −0.1, +0.1, +0.3

and +0.5. Series are stationary in this exercise. The integrated periodograms are

represented in the left graph in figure 2.2.

Simulation Exercise 2. We compare two processes, half of each model is white noise

and half is an autoregressive process of order one. The value of the AR(1) parameter

is −0.1 in the first class and +0.1 in the second class:

X (1)

t = ε(1)t if t = 1, . . . , T/2

X (1)

t = −0.1X (1)

t−1 + ε(1)t if t = T/2 + 1, . . . , T

X (2)

t = ε(2)t if t = 1, . . . , T/2

X (2)

t = +0.1X (2)

t−1 + ε(2)t if t = T/2 + 1, . . . , T

.

Different combinations of training sample sizes, n = 8 and 16, and series lengths,

T = 512, 1024 and 2048, are considered. In this exercise, the series are piecewise

stationary, although the series themselves are not stationary. The integrated peri-

odograms are represented on the right in figure 2.2.

Simulation Exercise 3. In this exercise, the stochastic models of both classes are

slowly time-varying second-order autoregressive processes:

X (1)

t = at;0.5X
(1)

t−1 − 0.81X (1)

t−2 + ε(1)t t = 1, . . . , T

X (2)

t = at;τX
(2)

t−1 − 0.81X (2)

t−2 + ε(2)t t = 1, . . . , T

with at;τ = 0.8[1 − τ cos(πt/1024)], where τ is a parameter (see figure 2.1). Each

training data set has n = 10 series of length T = 1024. Three comparisons have

been made, the first class always having the parameter τ = 0.5, and the second class

having the values τ = 0.4, 0.3 and 0.2, respectively. Notice that a coefficient of the

autoregressive structure is not fixed but it varies in time; therefore, the processes are

not stationary. We have also proved that, for these values of τ and any value of t, the

characteristic polynomial of the autoregressive process has roots outside the unit circle.
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Figure 2.1: Time-varying coefficients used in exercise 3
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The coefficients at;τ are represented in figure 2.1. See figure 2.3(a) for an example of

the integrated spectrum corresponding to these processes.

Figure 2.2: Integrated periodograms of the models used in exercises 1 and 2
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In order to test the robustness of our classification procedure and the SLEXbC method, we

perform additional experiments where the training set is contaminated with an outlier. In all

cases we contaminate the P (1) population by changing one series for another following a different

model. We consider three levels of contamination: one type of weak contamination (A) and two

strong contaminations (B and C).

Contamination A. For exercise 1, we replace the autoregressive structure by a

moving-average structure, that is, generate an MA(1) instead of an AR(1) model,

with the MA parameter equal to the AR parameter. For exercise 2, we make the same

substitution of structures in the autoregressive half of one series of a class (the other

half remains as a white noise). For exercise 3, we contaminate the set of slowly time-

-varying autoregressives of parameter +0.5 with a series of the same model but with

parameter value +0.2.
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Figure 2.3: Time-varying autoregressive model with τ = 0.4
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Contamination B. This contamination consists in using a parameter value of φ =

−0.9 in exercises 1 and 2 and τ = −0.9 in exercise 3 for one time series instead of the

correct value. Therefore, we always use the correct model except for one time series

where the parameter value is mistaken.

Contamination C. The same as contamination B but using a value +0.9 instead of

the value -0.9.

In figures 2.4(a) and 2.4(b), we illustrate the three contaminations for the first two exercises

with specific parameter values. Figure 2.4(c) shows contamination B for the third exercise.

The error rate estimates for the first simulation exercise are presented in table 2.1, for the sec-

ond simulation experiment in tables 2.2, 2.3, 2.4 and 2.5, and for the third simulation experiment

in tables 2.6, 2.7, 2.8 and 2.9. Each cell includes the mean and the standard error (in parentheses)

of the error rates based on 1000 runs.

Tables 2.10, 2.11 and 2.12 provide the estimates of the computation times of the different

classification methods using the simulation exercises previously described. In these tables, each

cell contains the average time in seconds to compute 1000 runs. The time is measured from

the instant the series are inputted into the algorithm until the moment the method gives the

error rate. The time required to generate the training and testing time series is not included in

the computation; nevertheless, for our method, the computation does include the construction

of functional data from the time series and the calcutation of depth inside groups. Simulation

exercises have been run on a personal computer with an AMD Athlon(tm) 64 Processor 3200+,

2.01GHz and 2.00Gb of RAM memory.
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Figure 2.4: Examples of contaminations for the three simulation experiments
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(a) Integrated spectrum for exercise 1: parameter +0.3 and its contaminations
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For all tables, we use the following notation: DbC (from depth-based classification) for algo-

rithm 1, DbC -α for algorithm 2 and SLEXbC for the method of Huang et al. (2004). If a number

follows DbC or DbC -α, this represents the number of blocks g into which the series are split. The

digits in bold correspond to the minimum misclassification rates (when there is at least one value

different from zero).

Figure 2.5: Third simulation with τ = 0.3 and contamination B: some figures when G = 4
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Figure 2.6: Third simulation with τ = 0.3 and contamination B: change of the error rates with G
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Comments on Error Rates

Table 2.1 shows the estimates of the misclassification rates for the first simulation exercise. We

can observe that when there is no contamination: DbC and DbC -α provide similar error rates,

and they are of lower value (approximately half) of those obtained by SLEXbC. As we expected,

for DbC and SLEXbC, error rates increase slightly with contamination A (weak) and notably

with contaminations B and C (strong), while changes are negligible for DbC -α because the trim

keeps the contamination out. When contamination A is applied, DbC has about half the errors of

SLEXbC ; whereas, their errors are similar with contaminations B and C. The three methods have

no misclassifications for series that are easy to assign, that is, for values of φ far from 0. There

are some symmetries in table 2.1 for DbC and SLEXbC : for example, the effect of contamination

B with positive (negative) φ values of the autoregressive process model is similar to the effect

of contamination C with negative (positive) φ. In addition, to extend the information provided

by the tables, we include some boxplots showing distributions of the misclassification rates. For

exercise 1, we only include the plot of one of the two most difficult discrimination settings, which

is the comparison of the autoregressive model with φ = +0.1 and the Gaussian white noise (see

figure 2.7). The plot shows that SLEXbC tends to have a higher median, higher errors above this

median, and fewer errors near zero. For the strongest contamination, DbC and SLEXbC classify

almost at random. On the other hand, DbC -α is the only method that maintains the same pattern

in the models with and without contamination and which has a considerable number of errors close

to zero.

Tables 2.2, 2.3, 2.4 and 2.5 provide the results of the second simulation exercise. As expected,

the errors decrease when any parameter, n or T , increases. The errors based on our methods,

DbC and DbC -α, are larger than the errors using SLEXbC when we consider the whole series

(without splitting them into blocks), although these errors fall with the first division. Notice that

our methods outperform SLEXbc when series are divided into blocks, achieving the minimum

error rates when g = 2. As we mentioned earlier, the length of the blocks decreases with g, and

this implies that the quality of the estimated periodogram is decreased and the errors increase.

This effect is reflected in all the tables and the optimal g is shown to be 2. Moreover, we can see

that the increase in error with g is higher for short series than for longer ones. Recall that, like
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Table 2.1: Misclassification rate estimates for simulation exercise 1 with and without contamination

φ = -0.5 φ = -0.3 φ = -0.1 φ = +0.1 φ = +0.3 φ = +0.5

Without contamination

DbC 0.000 (0.0000) 0.000 (0.0000) 0.063 (0.0017) 0.060 (0.0017) 0.000 (0.0000) 0.000 (0.0000)

DbC -α 0.000 (0.0000) 0.000 (0.0000) 0.065 (0.0018) 0.062 (0.0017) 0.000 (0.0000) 0.000 (0.0000)

SLEXbC 0.000 (0.0000) 0.000 (0.0000) 0.131 (0.0024) 0.127 (0.0024) 0.000 (0.0000) 0.000 (0.0000)

Contamination A

DbC 0.000 (0.0000) 0.000 (0.0001) 0.077 (0.0019) 0.074 (0.0019) 0.000 (0.0001) 0.000 (0.0000)

DbC -α 0.000 (0.0000) 0.000 (0.0000) 0.064 (0.0017) 0.062 (0.0017) 0.000 (0.0000) 0.000 (0.0000)

SLEXbC 0.000 (0.0000) 0.000 (0.0001) 0.175 (0.0028) 0.172 (0.0029) 0.000 (0.0001) 0.000 (0.0000)

Contamination B

DbC 0.000 (0.0000) 0.000 (0.0001) 0.300 (0.0028) 0.513 (0.0012) 0.001 (0.0002) 0.000 (0.0000)

DbC -α 0.000 (0.0000) 0.000 (0.0000) 0.065 (0.0018) 0.062 (0.0017) 0.000 (0.0000) 0.000 (0.0000)

SLEXbC 0.000 (0.0000) 0.001 (0.0002) 0.377 (0.0025) 0.491 (0.0011) 0.002 (0.0003) 0.000 (0.0000)

Contamination C

DbC 0.000 (0.0000) 0.001 (0.0002) 0.512 (0.0013) 0.300 (0.0027) 0.000 (0.0001) 0.000 (0.0000)

DbC -α 0.000 (0.0000) 0.000 (0.0000) 0.064 (0.0017) 0.062 (0.0017) 0.000 (0.0000) 0.000 (0.0000)

SLEXbC 0.000 (0.0000) 0.002 (0.0004) 0.490 (0.0011) 0.377 (0.0025) 0.001 (0.0002) 0.000 (0.0000)

Figure 2.7: Boxplot of the misclassification rates in exercise 1, parameters values +0.1 versus 0
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Table 2.2: Misclassification rate estimates for simulation exercise 2 without contamination

nxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.141 (0.0024) 0.131 (0.0024) 0.062 (0.0017) 0.060 (0.0017) 0.014 (0.0008) 0.014 (0.0008)

2 0.066 (0.0017) 0.061 (0.0017) 0.015 (0.0009) 0.014 (0.0008) 0.001 (0.0003) 0.001 (0.0003)

4 0.078 (0.0019) 0.069 (0.0018) 0.015 (0.0009) 0.014 (0.0009) 0.001 (0.0003) 0.001 (0.0003)

8 0.090 (0.0020) 0.080 (0.0019) 0.020 (0.0010) 0.018 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

DbC -α 1 0.143 (0.0024) 0.132 (0.0024) 0.063 (0.0017) 0.061 (0.0017) 0.015 (0.0009) 0.014 (0.0008)

2 0.069 (0.0018) 0.064 (0.0017) 0.016 (0.0009) 0.015 (0.0009) 0.001 (0.0003) 0.001 (0.0003)

4 0.083 (0.0020) 0.073 (0.0018) 0.017 (0.0010) 0.016 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

8 0.105 (0.0023) 0.088 (0.0020) 0.024 (0.0011) 0.019 (0.0010) 0.002 (0.0004) 0.002 (0.0003)

SLEXbC 0.114 (0.0023) 0.086 (0.0020) 0.038 (0.0014) 0.025 (0.0011) 0.007 (0.0006) 0.003 (0.0004)

our procedure, the SLEXbC method implicitly splits the series into blocks. When we consider

contaminations in the model, the error rates based on DbC and SLEXbC increase slightly with

contamination A and greatly with contaminations B and C, while DbC -α maintains its errors and

outperforms the other methods, especially with strong contaminations and g = 2. As expected,

contaminating a series has major effects when samples sizes are n = 8 compared to when n = 16.

The DbC and SLEXbC methods are more affected by contamination C than by contamination B,

since φ = +0.9 is farther from φ = −0.1 (population P (1)) than φ = −0.9.

The boxplots of the error distributions for exercise 2 are represented in figure 2.8. As in the

tables, the plots show that DbC and DbC -α perform better than SLEXbC when g > 1. The

median error rate decreases when g = 2 (with respect to g = 1) and presents stable performance

for g greater than 2. These plots and tables reflect that DbC -α, with g = 2, tends to provide the

best results, except when there is no contamination with which DbC with g = 2 outperforms all

the other methods.

Similar results to the previous ones can be derived for simulation exercise 3 (see tables 2.6, 2.7,

2.8 and 2.9). They show that in our proposal the drawback of splitting too much is not relevant

when series are long enough. With the presence of contamination, the best errors are obtained

by DbC -α for g = 4. Contamination A has minor effects. On the other hand, results are very

different for contaminations B and C. Notice that since τ has positive values in both populations,

contaminating with a time series of parameter τ = −0.9 (contamination B) has a stronger effect

than using a series with τ = +0.9 (contamination C).

Finally, in the three experiments a subtle effect can be seen between DbC and DbC -α. When

there is no contamination it is normal for the former to provide slightly better error rates, because

DbC -α is using only 100(1−α)% of the training data available. Nevertheless, when there is some
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Table 2.3: Misclassification rate estimates for simulation exercise 2 with contamination A

nxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.143 (0.0025) 0.132 (0.0024) 0.063 (0.0017) 0.062 (0.0017) 0.018 (0.0010) 0.015 (0.0008)

2 0.070 (0.0018) 0.062 (0.0017) 0.018 (0.0010) 0.014 (0.0008) 0.002 (0.0003) 0.001 (0.0003)

4 0.083 (0.0020) 0.071 (0.0019) 0.019 (0.0010) 0.015 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

8 0.102 (0.0022) 0.083 (0.0020) 0.026 (0.0012) 0.019 (0.0010) 0.003 (0.0004) 0.002 (0.0003)

DbC -α 1 0.145 (0.0025) 0.132 (0.0023) 0.063 (0.0017) 0.061 (0.0017) 0.015 (0.0009) 0.014 (0.0008)

2 0.072 (0.0018) 0.064 (0.0017) 0.015 (0.0009) 0.015 (0.0009) 0.001 (0.0002) 0.001 (0.0003)

4 0.086 (0.0021) 0.073 (0.0018) 0.018 (0.0010) 0.016 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

8 0.114 (0.0024) 0.089 (0.0021) 0.025 (0.0011) 0.019 (0.0010) 0.003 (0.0004) 0.002 (0.0003)

SLEXbC 0.128 (0.0025) 0.092 (0.0021) 0.050 (0.0016) 0.027 (0.0012) 0.012 (0.0008) 0.004 (0.0004)

Table 2.4: Misclassification rate estimates for simulation exercise 2 with contamination B

nxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.258 (0.0029) 0.168 (0.0026) 0.252 (0.0029) 0.117 (0.0022) 0.250 (0.0029) 0.065 (0.0018)

2 0.135 (0.0024) 0.082 (0.0020) 0.088 (0.0021) 0.030 (0.0012) 0.049 (0.0016) 0.007 (0.0006)

4 0.137 (0.0025) 0.085 (0.0020) 0.089 (0.0021) 0.031 (0.0012) 0.049 (0.0016) 0.007 (0.0006)

8 0.143 (0.0025) 0.092 (0.0021) 0.093 (0.0022) 0.034 (0.0014) 0.050 (0.0016) 0.007 (0.0006)

DbC -α 1 0.145 (0.0024) 0.134 (0.0024) 0.064 (0.0017) 0.061 (0.0017) 0.015 (0.0008) 0.014 (0.0008)

2 0.070 (0.0018) 0.065 (0.0017) 0.017 (0.0010) 0.015 (0.0009) 0.003 (0.0006) 0.001 (0.0003)

4 0.081 (0.0020) 0.071 (0.0019) 0.017 (0.0010) 0.017 (0.0009) 0.002 (0.0003) 0.002 (0.0003)

8 0.104 (0.0023) 0.087 (0.0020) 0.023 (0.0011) 0.019 (0.0010) 0.002 (0.0004) 0.002 (0.0003)

SLEXbC 0.239 (0.0031) 0.134 (0.0024) 0.228 (0.0030) 0.081 (0.0020) 0.220 (0.0030) 0.037 (0.0013)
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Table 2.5: Misclassification rate estimates for simulation exercise 2 with contamination C

nxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.457 (0.0056) 0.162 (0.0027) 0.437 (0.0055) 0.090 (0.0020) 0.445 (0.0047) 0.038 (0.0013)

2 0.147 (0.0036) 0.078 (0.0019) 0.055 (0.0020) 0.028 (0.0012) 0.015 (0.0010) 0.005 (0.0005)

4 0.187 (0.0037) 0.092 (0.0021) 0.068 (0.0022) 0.030 (0.0012) 0.017 (0.0010) 0.006 (0.0005)

8 0.225 (0.0039) 0.107 (0.0022) 0.101 (0.0027) 0.034 (0.0014) 0.024 (0.0011) 0.006 (0.0006)

DbC -α 1 0.145 (0.0025) 0.133 (0.0024) 0.063 (0.0017) 0.062 (0.0017) 0.015 (0.0009) 0.014 (0.0008)

2 0.073 (0.0020) 0.065 (0.0017) 0.018 (0.0013) 0.015 (0.0009) 0.002 (0.0005) 0.001 (0.0003)

4 0.083 (0.0020) 0.073 (0.0018) 0.017 (0.0010) 0.016 (0.0009) 0.002 (0.0003) 0.001 (0.0003)

8 0.108 (0.0022) 0.088 (0.0021) 0.024 (0.0011) 0.019 (0.0010) 0.003 (0.0004) 0.002 (0.0003)

SLEXbC 0.376 (0.0036) 0.177 (0.0029) 0.354 (0.0032) 0.098 (0.0023) 0.369 (0.0030) 0.040 (0.0015)

Figure 2.8: Boxplots of the misclassification error rates for simulation exercise 2, training sets with 8

series of length 1024
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Table 2.6: Misclassification rate estimates for simulation exercise 3 without contamination

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.218 (0.0031) 0.063 (0.0017) 0.019 (0.0010)

2 0.119 (0.0023) 0.006 (0.0006) 0.000 (0.0000)

4 0.101 (0.0022) 0.002 (0.0003) 0.000 (0.0000)

8 0.123 (0.0024) 0.003 (0.0004) 0.000 (0.0000)

DbC -α 1 0.226 (0.0032) 0.065 (0.0018) 0.021 (0.0010)

2 0.128 (0.0023) 0.006 (0.0006) 0.000 (0.0000)

4 0.112 (0.0023) 0.002 (0.0003) 0.000 (0.0000)

8 0.139 (0.0026) 0.004 (0.0004) 0.000 (0.0000)

SLEXbC 0.181 (0.0031) 0.011 (0.0009) 0.000 (0.0000)

Table 2.7: Misclassification rate estimates for simulation exercise 3 with contamination A

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.232 (0.0032) 0.062 (0.0017) 0.019 (0.0009)

2 0.143 (0.0026) 0.006 (0.0006) 0.000 (0.0000)

4 0.144 (0.0026) 0.004 (0.0004) 0.000 (0.0000)

8 0.177 (0.0028) 0.005 (0.0005) 0.000 (0.0000)

DbC -α 1 0.241 (0.0035) 0.065 (0.0018) 0.020 (0.0010)

2 0.131 (0.0025) 0.007 (0.0006) 0.000 (0.0000)

4 0.121 (0.0026) 0.003 (0.0004) 0.000 (0.0000)

8 0.150 (0.0029) 0.005 (0.0005) 0.000 (0.0000)

SLEXbC 0.234 (0.0033) 0.016 (0.0011) 0.000 (0.0000)
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Table 2.8: Misclassification rate estimates for simulation exercise 3 with contamination B

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.254 (0.0029) 0.106 (0.0022) 0.043 (0.0015)

2 0.500 (0.0015) 0.067 (0.0021) 0.001 (0.0002)

4 0.500 (0.0012) 0.062 (0.0020) 0.001 (0.0002)

8 0.499 (0.0013) 0.082 (0.0024) 0.000 (0.0001)

DbC -α 1 0.231 (0.0031) 0.074 (0.0020) 0.026 (0.0012)

2 0.128 (0.0024) 0.007 (0.0006) 0.000 (0.0000)

4 0.113 (0.0023) 0.002 (0.0004) 0.000 (0.0000)

8 0.141 (0.0026) 0.003 (0.0004) 0.000 (0.0000)

SLEXbC 0.492 (0.0019) 0.174 (0.0051) 0.015 (0.0009)

Table 2.9: Misclassification rate estimates for simulation exercise 3 with contamination C

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.257 (0.0029) 0.107 (0.0022) 0.044 (0.0015)

2 0.153 (0.0025) 0.017 (0.0009) 0.000 (0.0001)

4 0.128 (0.0024) 0.007 (0.0006) 0.000 (0.0000)

8 0.132 (0.0024) 0.006 (0.0006) 0.000 (0.0001)

DbC -α 1 0.234 (0.0031) 0.074 (0.0020) 0.025 (0.0012)

2 0.125 (0.0024) 0.007 (0.0006) 0.000 (0.0001)

4 0.114 (0.0024) 0.002 (0.0004) 0.000 (0.0000)

8 0.138 (0.0026) 0.004 (0.0004) 0.000 (0.0000)

SLEXbC 0.173 (0.0027) 0.015 (0.0009) 0.000 (0.0001)
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Table 2.10: Mean computation times for simulation exercise 1

φ = -0.5 φ = -0.3 φ = -0.1 φ = +0.1 φ = +0.3 φ = +0.5

DbC 0.027 0.027 0.027 0.027 0.027 0.027

DbC -α 0.044 0.045 0.045 0.044 0.044 0.044

SLEXbC 0.632 0.678 0.724 0.713 0.670 0.619

kind of contamination the best results are given by DbC -α.

Comments on Computation Times

Estimates of the computation times are given in tables 2.10, 2.11 and 2.12. The computation time

depends on the implementation —not just on the method itself—so we pay closer attention to the

qualitative interpretation of the results, as they are less dependent on the programmed code.

Since the chronometer is called after generating the series, it can be expected that the computa-

tion times do not depend on the parameters of the stochastic processes. This is what we observed

for our algorithms, but not for the SLEXbC method. Perhaps this is because this method needs

to select a basis of the SLEX library for each series, while our method works only with the graphs

of the functions and the computation of the integrated periodograms, which do not depend on the

parameters.

Some conclusions that can be derived from the three simulation exercises are the following: it

is clear that for our procedures, computation time increases with the number of blocks g; table

2.11 shows that our methods, especially DbC -α, depend on sample size; and the computation of

depth is moderately time-consuming with the sample size and in less degree with series length.

Nonetheless, we have conveniently implemented the notion of depth in López-Pintado and Romo

(2006) so it is computationally feasible and applicable to high sample sizes. Table 2.11 illustrates

that DbC -α computation time increases with size but it is still reasonable and faster than SLEXbC.

In short, for our approach computation time depends more on the number of blocks g and the

sample size n, but not so much on the series length T . In contrast, SLEXbC computation time

depends on both, n and T , and increases when either of them increases.

2.5 Real Data Example

2.5.1 Explosions and Earthquakes Data

We have evaluated our proposal in a benchmark data set containing eight explosions, eight earth-

quakes and one extra series —known as NZ event— not classified (but being either an earthquake

or an explosion). This data set was constructed by Blandford (1993). Each series contains 2048
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Table 2.11: Mean computation times for simulation exercise 2

nxT = 8x512 16x512 8x1024 16x1024 8x2048 16x2048

DbC 1 0.021 0.028 0.027 0.038 0.044 0.067

2 0.036 0.049 0.043 0.060 0.062 0.087

4 0.066 0.092 0.067 0.094 0.081 0.115

8 0.125 0.180 0.126 0.181 0.129 0.186

DbC -α 1 0.031 0.108 0.044 0.200 0.084 0.463

2 0.046 0.137 0.064 0.237 0.103 0.496

4 0.086 0.280 0.087 0.276 0.123 0.505

8 0.170 0.585 0.171 0.595 0.173 0.602

SLEXbC 0.355 0.517 0.736 1.095 1.681 2.506

Table 2.12: Mean computation times for simulation exercise 3

τ = 0.4 τ = 0.3 τ = 0.2

DbC 1 0.031 0.030 0.030

2 0.047 0.047 0.048

4 0.074 0.074 0.074

8 0.140 0.140 0.140

DbC -α 1 0.066 0.062 0.063

2 0.083 0.093 0.094

4 0.120 0.121 0.120

8 0.235 0.234 0.235

SLEXbC 0.733 0.685 0.675
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Figure 2.9: Real data examples and its curves
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points, and its plot clearly shows two different parts — the first half is the part P and the sec-

ond half is S. This division is an assumption considered by most authors, and it is based on

geological reasons. It is also frequently considered that both parts are stationary. Kakizawa

et al. (1998) give a list of these measurements. Shumway and Stoffer (2000) included a de-

tailed study of this data set and provide access to the data set on the web site of their book:

http://www.stat.pitt.edu/stoffer/tsa.html. Figure 2.9 presents examples of an earthquake

and an explosion, plus the NZ event.

Following the criterion to choose between normalized and nonnormalized versions of the cumu-

lative periodogram given in section 2.2, we have considered the curve formed by merging the

nonnormalized integrated periodograms of parts P and S independently computed; that is, we

take g = 2. Let us consider the eight earthquakes as group 1 and the eight explosions as group

2. We have used leave-one-out cross validation to classify the elements of these two groups by

removing a series at a time and using the rest of the data to train the method for final classification

of the series. With this validation procedure, our two algorithms misclassify the first series of group

2 (explosions). Regarding the NZ event, both algorithms agree on assigning it to the explosions

group, as described previously by other authors (for example, Kakizawa et al. [1998] and Huang

et al. [2004]).

An additional exercise considers an artificial data set constructed by the eight earthquakes plus

the NZ event as group 1, and the eight explosions as group 2. Note that our method and most of

the published papers classify NZ as an explosion. Therefore, this could be considered an artificial

scenario where an outlier is presented in group 1. In this situation, algorithm 1 misclassifies the
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first and the third elements of group 2 (explosions), whereas algorithm 2 misclassifies only the first

series of group 2. This seems to show the robustness of our second algorithm. Obviously, as we

are using leave-one-out cross validation, both algorithms classify the NZ event in the explosions

group.

2.6 Conclusions

We propose a new frequency domain approach for time series classification based on the integrated

periodograms of the series. When series are nonstationary, they are split into blocks and the

integrated periodograms of the blocks are merged to construct a curve. This idea relays on the

assumption that series are locally stationary. Since the integrated periodogram is a function, the

statistical tools for functional data analysis can be applied. In our classification procedure new

series are assigned to the class minimizing the distance between its corresponding curve and the

group mean curve. Since the group mean can be affected by the presence of outliers, robustness

of the classification method is achieved by substituting the mean curve with the α-trimmed mean,

where only the deepest elements are averaged for each group. To evaluate our proposal in different

scenarios, we have done simulation exercises containing several models and parameters, with both

stationary and nonstationary series, as well as with different types of contamination. We have

also illustrated the performance of our procedure in a real benchmark data set. Our proposal

provides small error rates, robustness, and good computational performance: properties which

make the methodology suitable for time series classification. It also outperforms previous methods

proposed in the literature. This chapter suggests that the integrated periodogram contains useful

information for classifying time series.
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Chapter 3

Functional Data Classification

Summary: A popular approach for classifying functional data is based on the distances

from the function or its derivatives to group representative (usually the mean) functions

or their derivatives. In this chapter, we propose using a combination of those distances.

Simulation studies show that our procedure performs very well, resulting in smaller

testing classification errors. Applications to real data show that our procedure performs

as well as —and in some cases better than— other classification methods1.

Key words : functional data, discriminant analysis, weighted distances.

3.1 Introduction

Functional data have great —and growing— importance in Statistics. Nowadays, functional data

are present in many areas, sometimes because they are the output of measurement processes, other

times for theoretical or practical reasons — functional models are used even for nonfunctional data

(see section 1.2 of Ramsay and Silverman [2006]). Most of the classical techniques for the finite-

and high-dimensional frameworks have been adapted to cope with the infinite dimensions, but due

to the curse of dimensionality, new and specific treatments are still required. As with other types

of data, statisticians must supervise different steps —registration, missing data, representation,

transformation, typicality— and tackle different tasks —modelization, classification or cluster-

ing, amongst others. In practice, curves can neither be registered continuously nor at infinite

points. Then, techniques dealing with high-dimensional data can sometimes be applied: Hastie

et al. (1995), for example, adapt the discriminant analysis to cope with many highly correlated

predictors, “such as those obtained by discretizing a function”.

Among the approaches specifically designed for functional data classification, the following

project the data into a finite-dimensional space of functions and therefore work with the coef-

ficients; this technique is called filtering. James and Hastie (2001) model the coefficients with

1MATLAB code is available at http://www.Casado-D.org/edu/publications.html.
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“Gaussian distribution with common covariance matrix for all classes, by analogy with LDA [lin-

ear discriminant analysis]”; their classification minimizes the distance to the group mean. The

classification method of Hall et al. (2001) maximizes the likelihood, and although they propose a

fully nonparametric density estimation, in practice multivariate Gaussian densities are considered,

leading to quadratic discriminant analysis. Biau et al. (2003) apply k-nearest neighbour to the

coefficients, while Rossi and Villa (2006) apply support vector machines. Berlinet et al. (2008)

extend the approach of Biau et al. (2003) to wavelet bases and to more general discrimination

rules. Our proposals can imply a higher dimensional reduction, but, on the other hand, the orig-

inal functional data cannot be recovered (even approximately). Other proposals are designed to

make direct use of the continuity of the functional data. Ferraty and Vieu (2003) classify new

curves in the group with the highest posterior probability of membership kernel estimate. On

the other hand, López-Pintado and Romo (2006) also take into account the continuous feature

of the data and propose two classification methods based on the notion of depth for curves: in

their first proposal new curves are assigned to the group with the closest trimmed mean, while the

second method minimizes a weighted average distance to each element in the group. Abraham et

al. (2006) extend the moving window rule for functional data classification. Nerini and Ghattas

(2007) classify density functions with functional regression trees. Báıllo and Cuevas (2008) pro-

vide some theoretical results on the functional k-nearest neighbour classifier, and suggest —as a

partial answer— that this method could play the same central role for functional data as Fisher’s

method for the finite-dimensional case. To use only the most informative parts of the curves, Li

and Yu (2008) have proposed a new idea: they use F-statistics to select the place where linear

discriminant analysis is applied into small intervals, providing an output that is used as input in

a final support vector machines step.

There are several works addressing the unsupervised classification —or clustering— problem.

Abraham et al. (2003) fit the functional data by B-splines and apply k-means on the coefficients.

James and Sugar (2003) project the data into a finite-dimensional space and consider a random-

-effects model for the coefficients; their method is effective when the observations are sparse,

irregularly spaced or occur at different time points for each subject. The continuous nature of

the data is used, in a more direct form, by other works. The proposal of Tarpey and Kinateder

(2003) classifies using a k-means algorithm over the probability distributions. A hierarchical

descending procedure, using heterogeneity indexes based on modal and mean curves, is presented

in Dabo-Niang et al. (2006). Impartial trimming is combined with k-means in Cuesta-Albertos

and Fraiman (2007).

Functional data can be transformed in several ways. After the registration, spatial or temporal

alignments are sometimes necessary; references on this topic are Wang and Gasser (1997, 1999)

and Ramsay and Silverman (2006). On the other hand, Dabo-Niang et al. (2007) use a distance

invariant to small shifts. Examples of centering, normalization and derivative transformations

are found in Rossi and Villa (2006). The objective of the transformations is to highlight some
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features of the data and to allow the information to be used more efficiently. For this kind of data,

when they are smooth enough, the most important transformation is taking derivatives. Since the

different derivatives can contribute new information, a possible combination of them —or their

information— should be taken into account. Mathematical Functional Analysis has been working

with such combinations for a long time, mainly through some norms (in norm and Sobolev spaces),

and Ramsay and Silverman (2006) find them frequently as a consequence of model adjustements

or system properties (for Canadian weather stations data, melanoma data or lower lip movement

data).

In order to obtain semimetrics, instead of metrics, Ferraty and Vieu (2006) consider derivatives

(one at a time) in the distances. This implies theoretical advantages —throughout the topological

structure induced by the semimetric— in the small ball probability function, providing a new way

to deal with the curse of dimensionality.

We transform the functional data classification problem into a classical multivariate data classi-

fication problem. While the filtering techniques encapsulate the functional information into a

set of coefficients, we construct a linear combination of variables and coefficients. Given the

variables, the linear discriminant analysis determines the combination. Our proposal is based

on the interpretation as variables of the distances between a new curve and the transformed and

untransformed functional data. On the one hand, the classification can be improved, and, on

the other hand, the coefficients of the combination provide information about the importance of

each data transformation. When a nonnegativeness condition is applied to the coefficients, the

combination (discriminant function) can be interpreted as the difference of measurements with a

weighted distance. This metric automatically becomes a semimetric when the importance of the

distance to the untransformed data is null or insignificant; but the user can force, by considering

only the derivatives as input, the method to produce a semimetric as output.

The chapter is organized as follows: in section 2 the classification method is presented and

described, from the optimization problem to the classification algorithm; in section 3, our proposal

is evaluated using several simulation exercises; two real data sets are classified in section 4; finally,

in section 5 a summary of conclusions is given.

3.2 The Classification Method

3.2.1 The Optimization Problem

An Additional Constraint

In order to base the classification on a semimetric or on a metric, one version of our proposal

adds another constraint —in fact, several nonnegativity constraints— to the classical Fisher’s
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discriminant analysis optimization problem:

a = argmax
{
atBa

}
subject to

{
atWa = 1

a ≥ 0
, (3.1)

where B is the between-class scatter matrix, W is the within-class scatter matrix, a = (a1, . . . , ap)
t,

and a ≥ 0 means ai ≥ 0, i = 1, . . . , p (see appendix D for the definition of B and W. Notice

that B is positive semidefinite and W is, by hypothesis, positive definite). This is a nonlin-

ear (quadratic) programming problem with an equality constraint and nonnegativity constraints.

The latter constraints are frequently dealt with in literature, since they appear naturally when

considering the dual problems of linear and quadratic programs (see examples 3.4.2 and 3.4.3 of

Bertsekas [1999] or sections 4.3 and 4.4 of Boyd and Vandenberghe [2008]). The solution of this

new optimization problem can be represented by the pair (an, λn), with atnWan = 1, an ≥ 0 and

λn = atnBan. Let us denote V ∗a = {ca, c ∈ R, c 6= 0}. Section 3.2.2 contains some theory on

obtaining the explicit expression of an.

Geometrically, the set Va = V ∗a ∪ {a = 0} is a one-dimensional linear subspace of Rp. When

V ∗a intersects the nonnegative orthant {a ∈ Rp | a ≥ 0} outside the origin, this last optimization

problem will provide the same solution as those without the nonnegativity constraints.

Convexity

The cost function atBa is convex due to proposition 22(d) and the positive definiteness of the

matrix B.

Existence of Solutions

In this new optimization problem, the feasible domain is

D =
{
a ∈ Rp | atWa = 1 and a ≥ 0

}
, (3.2)

that is convex, since proposition 23(a) can be applied after writing

D = {a ∈ Rp | atWa ≤ 1} ∩ {a ∈ Rp | a ≥ 0}. (3.3)

On the other hand, as the inequality constraints are expressed in terms of linear functions,

they do not change the performance of the second derivatives of the Lagrangian, that is, do not

change the convexity of the cost function of the optimization problem. As a consequence, the

existence of solution is guaranteed as in the classical discriminant analysis optimization problem

(see appendix D).

Case K = 2: Two Populations

In this case, the optimization problem (3.1) is equivalent to the following one (see appendix D):

a = argmax
{

[at(x(1) − x(2))]2
}

subject to

{
atWa = 1

a ≥ 0
. (3.4)
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3.2.2 The Discriminant Function

The expression of the discriminant function with our additional constraint, y = atnx, is more

difficult to obtain than in the classical case (see appendix D). Athough the optimization problem

can be solved computationally, we present explicit expressions for some specific easy cases (notice

that in this work we consider p = 1, 2 or 3). A possible different way to obtain such a explicit

expression is outlined in section 4.2.2.

Although we are interested in the K = 2 case, some of the following calculations are made

with the same difficulty for the general K-populations case; that is, for the general problem (3.1)

instead of this specific one (3.4). As was mentioned, when the linear subspace Va of Rp intersects

the nonnegative orthant {a ∈ Rp | a ≥ 0} outside the origin, that is, when all the components of

aF have the same sign, the new discriminant function will be

y = atnx = αatFx = α(x(1) − x(2))tW−1x, (3.5)

with α = +1 or α = −1 so that the condition αaF ≥ 0 holds (note that this would avoid the need

for calculation of the constrained linear discriminant function).

In general, when all the components of aF do not have the same sign, formal calculations

are necessary. The objective function —of the optimization problem— and the constraints are

combined in the Lagrangian, and the nonnegativeness is taken into account through the Karush-

-Kuhn-Tucker conditions, that are necessary and sufficient (see proposition 35 in appendix E):
∂L
∂a

= 0
∂L
∂β

= 0

ai ≥ 0, µi ≥ 0 and µiai = 0,

(3.6)

where the Lagrangian is

L(a, β, µ) = atBa + β(1− atWa) + atµ (3.7)

and µ = (µi, . . . , µp)
t and β are the multipliers. It holds that

∂L

∂a
= 2Ba− β2Wa + µ. (3.8)

The conditions (3.6) become
2(B− βW)a = −µ
atWa = 1

ai ≥ 0, µi ≥ 0 and µiai = 0,

(3.9)

which are a system with 2p+1 conditions and variables. Giving an explicit solution of this system

is only possible in simple cases.
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Case p = 1: One Variable

In this case, with only one discriminant variable, the original Fisher’s discriminant analysis is

trivial, since

λ(a) =
aBa

aWa
=
B

W
= constant. (3.10)

Case p = 2: Two Variables

First of all, when two populations are considered, let us denote

W =

(
w11 w12

w21 w22

)
and B =

(
b11 b12

b21 b22

)
,

where by definition w12 = w21 and b12 = b21.

For two discriminant variables, three nonnull subcases (see the searching strategy mentioned

in appendix E) cover the bidimensional positive quadrant where a is:

(A) Case a1 > 0, µ1 = 0 and a2 = 0. In this case,

(a1) By hypothesis, µ1 = 0 and a2 = 0.

(a2) From atWa = 1 the value a1 = |
√
w−1

11 | is obtained.

(a3) Finally, 2(B−βW)a = −µ implies that β = w−1
11 b11 and µ2 = −2(b21−w−1

11 b11w21)|
√
w−1

11 |.

The discriminant function, if B− βW is negative semidefinite, would be

yA = atnx = |
√
w−1

11 |x1. (3.11)

(B) Case a1 = 0, a2 > 0 and µ2 = 0. In this case,

(b1) By hypothesis, a1 = 0 and µ2 = 0.

(b2) Thus, atWa = 1 implies the value a2 = |
√
w−1

22 |.

(b3) From 2(B− βW)a = −µ the values β = w−1
22 b22 and µ1 = −2(b12 −w−1

22 b22w12)|
√
w−1

22 |
are obtained.

The discriminant function, if B− βW is negative semidefinite, would be

yB = atnx = |
√
w−1

22 |x2. (3.12)

(C) Case a1 > 0, µ1 = 0, a2 > 0 and µ2 = 0. To study the interior solutions,

(c1) By hypothesis µ = 0, the nonnegativity constraint disappears from the Lagrangian and

the objective function is again L(a) = λ(a).
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(c2) As (B − βW)a = 0, it is necessary that |B − βW| = 0; this condition implies, since

W is not singular (by hypothesis), that

β =
−b±

√
b2 − 4|W||B|
2|W|

, (3.13)

with b = w12b21 + w21b12 − w11b22 − w22b11. This means that (W−1B− βI)a = 0, and

we are again interested in an eigenvector of an eigenvalue of W−1B. Nevertheless, now

the criterion is not selecting the largest eigenvalue, but selecting the largest one with

eigenvectors verifying the nonnegativity constraint (or nonpositiveness, since the scale

factor is not a problem).

(c3) Given β, also from (B − βW)a = 0 there will be nontrivial solution if a2 = γa1, or,

equivalently, a1 = γ−1a2 with

γ = −b11 − βw11

b12 − βw12

, or, respectively, γ = −b21 − βw21

b22 − βw22

, (3.14)

as |B− βW| = 0.

(c4) Finally, the condition atWa = 1 implies that

a1 = |
√

[w11 + γ(w12 + w21) + γ2w22]−1|, (3.15)

or, respectively,

a2 = |
√

[γ−2w11 + γ−1(w12 + w21) + w22]−1|, (3.16)

so the discriminant function, if B− βW is negative semidefinite, would be

yC = atnx = a1x1 + γa1x2, (3.17)

or, respectively,

yC = atnx = γ−1a2x1 + a2x2, (3.18)

with γ (and β) as given above.

Remark 21 In the last expressions it has been implicitly supposed that γ 6= 0 and γ 6= ∞.

Nevertheless, it is noteworthy that when γ → 0 or γ → ∞, the discriminant functions of the

cases (A) and (B) arise, respectively, as limit cases of (C). As a1 −→ |
√
w−1

11 | when γ → 0 and

a2 → |
√
w−1

22 | when γ →∞, respectively, then

yC −→ yA
γ→0

and
yC −→ yB

γ→∞
. (3.19)

Remark 22 The parameter γ acquires an important role, since it provides information —under

the nonnegativity constraints— about each variable importance for classifying purposes, that is,

about each variable discriminant power.
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Remark 23 This simple case p = 2 (two variables) and K = 2 (two populations) can be used to

better understand the meaning of the within-class scatter matrix,

W =

(
w11 w12

w21 w22

)
=

(
n1σ̂

(1)

11 + n2σ̂
(2)

11 n1σ̂
(1)

12 + n2σ̂
(2)

12

n1σ̂
(1)

21 + n2σ̂
(2)

21 n1σ̂
(1)

22 + n2σ̂
(2)

22

)
. (3.20)

Remark 24 The Karush-Kuhn-Tucker conditions are sufficient due to proposition 35 in appendix

E; this means that the previous calculations have led to the local and global minimum. On the

other hand, as these conditions are also necessary, due to proposition 33 in appendix E, it holds

that

∇2
aaL(a, β, µ) =

∂2L

∂a2
(a, β, µ) = 2(B− βW) (3.21)

is a positive semidefinite matrix (in this case, p = 2, and under the nonnegativity constraints).

Other Values of p

From the Karush-Kuhn-Tucker conditions of the cases p = 3 or p = 4, several subcases would

arise after some work, providing explicit expressions for an under some conditions on the samples.

Nevertheless, since it has been proved that there are no formula for the solution of a five-degree

general polinomial equation, for the cases p ≥ 5 it would be impossible to find —in this way—

the explicit expressions for an.

3.2.3 The Classification

To classify new elements, the previous discriminant function is applied following the same ideas

than in the classical discriminant analysis (see section D.4). Geometrically, the condition a ≥ 0

restricts the possible directions into which the data should be projected. We also determine the

cutoff point by projecting 1
2
(x(1) + x(2)) with y = atnx, that is, via the atn· premultiplication. The

method classifies a new element in the population k as follows:{
k = 1 if y > 1

2
atn(x

(1) + x(2))

k = 2 otherwise
, (3.22)

where the value y(1
2
x(1) + 1

2
x(2)) = 1

2
atn(x

(1) + x(2)) can be termed the adjusted cutoff point. No-

tice that for the particular case (3.5) the classification is just the same as that of the classical

discriminant analysis.

As for y = atFx, now the classification of a multivariate point is done for y = atnx by the

simple comparison of its projection with the projection of the semisum of the group means (cen-

troids). The computed with simulated and real data show that the classification provided by the

two discriminant functions is similar, while the nonnegativity restriction adds some theoretical

advantages.
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Remark 25 Rules like (3.22) assign the elements verifying the equality to the group 2. The num-

ber of these elements is usually negligible. Nevertheless, the frontier is sometimes not negligible

and a possible solution is assigning these elements to a group at random. We observed this effect

in some simulation exercises (methods DFMj, due to the nature of our discriminant variables),

and our code allocated these elements at random.

Remark 26 Rules like (D.40) assign the elements verifying the equality to the group 2. The

number of these elements is usually negligible.

3.2.4 Our Discriminant Variables

In order to facilitate understanding of the classification criterion, so far we have used generic

discriminant variables x1, . . . , xp. Now we define the specific variables and explain how to construct

them from the functional data.

If χ(1) and χ(2) are (p-1)-order differentiable functions in a functional space L, the quantities

d(Diχ(1), Diχ(2)), for i = 0, 1, . . . , p − 1, are numeric when d(·, ·) is a (semi)distance and the Di

denotes the i-th derivative (i = 0 represents no differentiation).

Assuming that there are two populations, with models X (1) and X (2), and let χ(k)
1 , . . . , χ(k)

nk
be a

sample of the population k, respectively; in this situation, for a function χ we define the variables

xi = d(Di−1χ,Di−1χ
(1)

)− d(Di−1χ,Di−1χ
(2)

), (3.23)

for i = 1, 2, . . . , p, where Di−1χ
(k)

= n−1
k

∑nk
e=1D

i−1χ(k)
e , k = 1, 2. That is, xi is the difference

between the distances from Di−1χ to the (i-1)-th derivative of the population means. With

these definitions, the discriminant analysis will provide information about the usefulness of each

derivative for classification purposes.

From the fact that d(·, ·) is a (semi)distance, some qualitative properties of our variables can

be deduced. The triangular property implies2 that

|xi| ≤ d(Di−1χ
(1)

, Di−1χ
(2)

). (3.24)

This means that there is a “natural sample boundary” for the values that each variable can take.

A problem can appear when Di−1χ
(1) ≈ Di−1χ

(2)

, since |xi| ≈ 0 and the order of magnitude of

variations in xi can be confused with some computational or approximation inaccuracies — the

discriminant variable would lose classification power. Our proposals assign a tiny weight to these

variables.

If the triangular property does not hold, some data such that |xi| � d(Di−1χ
(1)

, Di−1χ
(2)

)

might exist; then, the order of magnitude of small variations in xi could be confused with

d(Di−1χ
(1)

, Di−1χ
(2)

), and the discriminant variable would lose classification power.

2d(a, c)− d(a, b) ≤ d(b, c) and d(a, b)− d(a, c) ≤ d(c, b) = d(b, c), so |d(a, c)− d(a, b)| ≤ d(b, c)
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If d(·, ·) were only a semidistance, not a distance, some pairs of different points would be

indistinguishable; in the extreme —but possible— case where the original samples were such that

Di−1χ
(1) 6= Di−1χ

(2)

with d(Di−1χ
(1)

, Di−1χ
(2)

) = 0, inequality (3.24) would imply that xi ≡ 0,

and the information of the functional transformation Di−1 would not be used by our procedures.

Notice that, irrelevant of whether d(·, ·) is a semidistance or a distance, what may occur is that

Di−1χ
(1)

= Di−1χ
(2)

; in this situation d(Di−1χ
(1)

, Di−1χ
(2)

) = 0 and, due also to the inequality

(3.24), the variables xj, j ≥ i, are useless (this effect has been observed in the simulation exercises).

Thus, in our proposals it is important to test how different Di−1χ
(1)

and Di−1χ
(2)

are. In the

following, let us suppose that these quantities are different enough —this is essential for a method

based on the mean function— for the aforementioned problems not to hold (although this does not

guarantee good results, since the variability also plays an important role). In our implementations,

the variables with negligible variability have been discarded — those with variance smaller than
√
eps, where eps is the level of precision of the programming language. Nevertheless, these useless

variables are included in the graphical representations of our proposals.

On the other hand, for a unique variable xi, it is possible for two functions χ(1) 6= χ(2) (belonging

or not to the same population) to have corresponding univariate variable values holding x(1)

i = x(2)

i .

Nevertheless, from the theoretical point of view, if the functions were analytical, Di−1χ(1) =

Di−1χ(2), ∀i = 0, 1, . . . if, and only, if, χ(1) ≡ χ(2); in practice, even for nonanalytical functions

χ(1) 6= χ(2), the bigger the number of variables is, the more probable it is that the desiderable

condition x(1) 6= x(2) holds. Thus, one of the advantages of combining the information is that the

elements are usually better characterized in the finite-dimensional space. Our proposals involve a

drastic reduction of the dimension — from infinite to p (usually 2 or 3).

Remark 27 The following function can be thought of as the representative sample curve of the

k-th population,

R(k)

i−1 = Di−1χ
(k)

. (3.25)

Let us insist on the fact that functions are supposed to be differentiable, so the sample mean is a

“good representative” of a collection of smooth functions.

Remark 28 In this document we do not highlight the population version of the concepts, but, in

terms of the models X (1) and X (2) our discriminant variables are random variables; for a stochastic

function X ,

Xi = d(Di−1X ,E(Di−1X (1)))− d(Di−1X ,E(Di−1X (2))). (3.26)

Since d(·, ·) is a (semi)distance, the triangular property implies that

|Xi| ≤ d(E(Di−1X (1)),E(Di−1X (2))). (3.27)

This means that there is a “natural theoretical boundary” for the values that each variable can

take. When E(Di−1X (1)) = E(Di−1X (2)) these variables cannot be used for classification, as the

63



questions Xi < 0? and Xi > 0? make no sense. When the previous equality holds because

Di−1X (1) = Di−1X (2), the same will happen for any variable Xj, j ≥ i. Now, finally the represen-

tative population curve of the k-th population would be

R(k)

i−1 = E(Di−1X (k)). (3.28)

Remark 29 The previous sample and population boundaries for the variables depend on the

(semi)distance d(·, ·), not only on the data itself; this means that an inappropriate choice of

the distance could take little advantage of important differences between the groups (samples or

populations).

Remark 30 Since the derivation, the integration and the addition are linear operations, it holds

that Di−1χ
(k)

= Di−1χ(k), k = 1, 2 and E(Di−1X (k)) = Di−1E(X (k)), k = 1, 2. This highlights the

importance of the mean functions in our proposals.

Standardization and Coefficients

At this point, it is advisable to study the relationship between the variables just defined and

the interpretation of the coefficientes provided by the general optimization problem (see section

D.3.1).

Supposing that a variable t and a function χ(t) are not dimensionless (scalars without units of

measure), nor is D1χ(t) = dχ(t)/dt. Moreover, the derivative has a different dimension than its

original function, as the term dχ(t) has the same units as χ(t), while the term dt does not. As a

consequence, all the variables defined in (3.23) are dimensionless only when t and χ(t) also are.

Regardless, for classification and descriptive purposes the transformation and the standardiza-

tion of the data must be applied, respectively, as explained in section D.3.1. In our methodology

this could be done over the functions (definitions of mean and standard deviation for functional

data are given in literature), but it is preferable to operate over the multivariate data, as they are

just in the input of the multivariate optimization problem and it is not certain that the changes

were preserved in the functional-to-multivariate data transformation step.

3.2.5 Algorithms

Algorithms 3 and 4

Let χ(k)
1 (t), . . . , χ(k)

nk
(t), k = 1, 2, be samples of functions from the two populations,

then:

1. From functional to multivariate data. For each χ(k)
e (t), e = 1, . . . , nk, the

following vector is constructed

x(k)

e = (x(k)

1,e, . . . , x
(k)

p,e)
t, (3.29)
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where x(k)

i,e is obtained by (3.23). These vectors form the multivariate sample

(x(k)

1 , · · · ,x(k)

nk
). (3.30)

2. The discriminant function. These samples are used as input in the optimiza-

tion problem to obtain the discriminant function:

y(x) = atx, (3.31)

where x = (x1, . . . , xp)
t, and a = aF , in algorithm 3, or a = an, in algorithm 4,

depending on whether or not the additional constraint was imposed.

3. The allocation of new curves. To classify a new curve χ(t), its multivariate

vector is constructed,

x = (x1, . . . , xp)
t, (3.32)

again using expression (3.23), and finally the value y(x) is used to assign the

curve χ(t) to one of the two populations, as mentioned in subsections 3.2.3 and

D.4.

These steps have been represented in figure 3.5. Several versions of this algorithm have been

implemented and compared in the following sections.

Remark 31 As a distance measurement between two functions we have taken the distance given

in expression (1.76) for m = 1.

Remark 32 The possible outliers in the samples of functions could be extracted with the same

methodology used in section 2.2.3.

Code

In the link given on the first page of this chapter, we have made some code available. It implements

the methods DFM0,..., DFM(p-1), WI and WD (defined below, in the sections with computes).

There are two main scripts, one for simulation exercises and another for the application to real

data; the former runs a Monte Carlo loop, while the latter adds a leave-m-out cross-validation

partition of the real data (the user can choose the value of m, possibly different for each group).

The code can be executed without any derivative, that is, only with the crude functions, and can

manage as many derivatives as desired — the limit can come from the hardware, the software (we

have tested up to a differentiation of order 30) or the theory (with many discriminant variables,

the sample pooled covariance matrix can be singular).

Our code provides previous optional graphics that are based on an additional and independent

run of the loop; these graphics use both training and testing data and have a useful prospective

and descriptive character.

The code is fast and easy to execute and extend. The reader can reproduce, apply or extend

our results and graphics easily. A helping file is included with the code.
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3.2.6 Weighted Semidistances or Distances

Let us substitute, for a function χ(t), the discriminant variables into the expression of the discrim-

inant function:

y(x) = atx =

p∑
i=1

aixi

=

p∑
i=1

aid(Di−1χ,Di−1χ
(1)

)−
p∑
i=1

aid(Di−1χ,Di−1χ
(2)

)

= ζ(χ, χ(1))− ζ(χ, χ(2)), (3.33)

where

ζ(χ, χ(k)) =

p∑
i=1

aid(Di−1χ,Di−1χ
(k)

) =

p∑
i=1

aid(Di−1χ,Di−1χ(k)). (3.34)

More generally, for any curves χ1 and χ2 the weighted sum ζ(χ1, χ2) =
∑p

i=1 aid(Di−1χ1, D
i−1χ2)

can be considered. The values ai play a role in determining the properties that ζ(·, ·) inherits from

the distance d(·, ·).
An important general property of ζ(·, ·) is that it takes into account —with different importance

and at the same time— the functions, their smoothness, their curvature, etcetera. Some qualitative

information can be deduced by doing for ζ(·, ·) the same qualitative analysis done for d(·, ·) in

subsection 3.2.4.

For ζ(·, ·) to take nonnegative values, our additional restrictions (ai ≥ 0) are necessary; then,

only the function y = atnx —not the classical linear discriminant function— can be seen as

providing a classification based on the minimization of a weighted (semi)distance. In this situation,

the triangular property implies that

|y| ≤ ζ(χ(1), χ(2)). (3.35)

Thus, there is a “natural sample boundary” for the values that the discriminant function can take.

This inequality would also imply that |y| ≈ 0 when χ(1) ≈ χ(2), leading to a problem when the

order of magnitude of variations in y can be confused with some computational or approximation

inaccuracies — the discriminant variable would lose classification power. Nevertheless, χ(1) and

χ(2) were supposed different enough in section 3.2.4.

When ζ(·, ·) is not a (semi)distance, the triangular property does not hold; so some data such

that |y| � ζ(χ(1), χ(2)) might exist, and the order of magnitude of small variations in y could be

confused with ζ(χ(1), χ(2)), leading to a loss of classification power of the discriminant function.

This seems to indicate that our restrictions could improve the classification when data are such

that the classical Fisher’s discriminant function tends to take quite different values —smaller or

bigger— than ζ(χ(1), χ(2)). In this case, our constraints would prevent extreme values that could

deteriorate the classification.
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As in a space of functions the derivation can imply a loss of information, then ζ(·, ·) with ai ≥ 0

can be interpreted as measurements with a weighted distance if and only if a1 6= 0 (in practice, if

and only if a1 is significant) and d(·, ·) is a distance; otherwise, if a1 = 0 or d(·, ·) is a semidistance,

it can be interpreted as a measurement with a weighted semidistance, since two functions can

differ in a constant and verify that ζ(X (1),X (2)) = 0. When ζ(·, ·) is only a semidistance, not a

distance, some pairs of different points would be indistinguishable; in the extreme —but possible—

case where the original samples were such that χ(1) 6= χ(2) with ζ(χ(1), χ(2)) = 0, it would hold that

y ≡ 0, and the discriminant function would be useless (notice that χ(1) 6= χ(2) was supposed

in section 3.2.4). Finally, irrelevant of whether ζ(·, ·) is a semidistance or a distance, for any

two curves (belonging or not to the same population) the unlikely case where χ(1) 6= χ(2) with

y(x(1)) = y(x(2)) could occur.

Remark 33 The “natural theoretical boundary” of the random variable Y would be

|Y | ≤ ζ(E(X (1)),E(X (2))). (3.36)

3.3 Simulation Results

In order to illustrate the performance of our two procedures, we perform a Monte Carlo study

using three different settings. In all cases we consider two functional populations in the space

C[0, 1] of continuous functions defined in the interval [0, 1]. The methods used to classify are the

following:

• Distance to the sample functional mean, calculated using the functions in the training set

(DFM0 ). That is, using the rule{
k = 1 if x1 < 0

k = 2 otherwise
. (3.37)

• Distance to the sample functional mean, calculated using the first derivatives of functions

in the training set (DFM1 ). That is, using the rule{
k = 1 if x2 < 0

k = 2 otherwise
. (3.38)

• Weighted indicator (WI ) obtained using our first procedure (algorithm 3). Using the algo-

rithm with x = (x1, x2)t and without our additional constraint.

• Weighted distance (WD) obtained using our second procedure (algorithm 4). Then, for the

algorithm with x = (x1, x2)t and the nonnegativity constraint.
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We generate 200 functions from each population. The training set consists of the first 100

functions from each population, and the remaining 100 observations from each sample are the

testing set. For each setting we run 1000 replications, so the results are based on 1000 estimates

of the misclassification rates. The functions have been evaluated in 30 points between 0 and 1.

With the code that we have distributed, the reader can reproduce these exercises easily.

Thus, we describe the three considered settings.

Simulation Exercise 1. We consider the following two functional data generating

models:

Model B1. X (1)
e = t+ Ue, where Ue is a uniform random variable on the interval

(0, 1).

Model R1. X (2)
e = t + Ve, where Ve is a uniform random variable on the interval

(1/2, 3/2).

Remark 34 Figure 3.1(a) displays a random sample for these two models. Notice that models

B1 and R1 differ in level when Ue takes value in (0, 1/2) and Ve in (1, 3/2) but they coincide when

Ue and Ve take values in (1/2, 1). This intersection causes a theoretical misclassification rate equal

to 25% when the method DFM0 is used. Moreover, the first derivative of models X (1) and X (2)

coincides, so method DFM1 will have a misclassification rate equal to 50%.

Simulation Exercise 2. We consider the following two functional data generating

models:

Model B2. X (1)
e = (t+Ue)

2, where Ue is a uniform random variable on the interval

(0, 1).

Model R2. X (2)
e = t2 + Ve, where Ve is a uniform random variable on the interval

(0, 1).

Remark 35 Figure 3.1(b) displays a random sample for these two models. Notice that mod-

els B2 and R2 generate functional observations that cross one another; but if we consider the

first derivative, D1χ(1) and D1χ(2), then they have significant level differences. The theoretical

misclassification rate is equal to 12.5% when the method DFM1 is used.

Simulation Exercise 3. We consider the following two functional data generating

models:

Model B3. X (1)
e = (t+Ue)

2 + 5/4, where Ue is a uniform random variable on the

interval (0, 1).

Model R3. X (2)
e = (t+Ve)

2, where Ve is a uniform random variable on the interval

(1/2, 3/2).

68



Figure 3.1: Plots of samples from the three simulation settings: (a) Functions following models B1 and

R1; (b) Functions following models B2 and R2; (c) Functions following models B3 and R3.
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Remark 36 Figure 3.1(c) displays a random sample for these two models. Notice that models B3

and R3 also generate functional observations that cross one another (the term 5/4 in X (1) is added

in order to maximize the crossing) but if we consider the first derivatives, D1χ(1)(t) and D1χ(2)(t),

then these have level differences in the same way as χ(1)(t) and χ(2)(t) generated by models B1 and

R1, respectively. So, we have a theoretical misclassification rate equal to 25% when the method

DFM1 is used. In order to evaluate the derivatives of second order, in this exercise the method

DFM2 (defined in the following section) has been included, and an additional variable has been

considered in the methods WI and WD through x = (x1, x2, x3)t.

In figure 3.2 we present the results for the first simulation setting. Figure 3.2(a) gives the

boxplots of the misclassification rate estimates for the four methods. As expected, the method

DFM0 has a misclassification rate of around 25% and the method DFM1 is useless (it classifies

almost at random) in this setting. Figures 3.2(b) and 3.2(c) give the boxplots of the estimated

weights for methods WI and WD. Both methods give positive weights for the variable associated

to χ(1) and χ(2) and zero weights for the variable associated to D1χ(1) and D1χ(2). Notice that in

this case the variable D1χ(1) − D1χ(2) has variance equal to zero since D1χ(1)
e (t) = D1χ(2)

e (t) = 1

for all e. In this simulation setting, methods DFM0, WI and WD have the same performance.

In figure 3.3, we present the results for the second simulation setting. Figure 3.3(a) gives the

boxplots of the misclassification rate estimates for the four methods. In this case, method DFM0

is outperformed by method DFM1, which obtains misclassification rates around the expected

12.5%. Method WD has similar performance to DFM1, and both are outperformed by method

WI. Figures 3.3(b) and 3.3(c) give the boxplots of the estimated weights for methods WI and

WD. In this case, method WI gives positive weights for the variable associated to χ(1) and χ(2)

and negative (but higher in module) weights for the variable associated to D1χ(1) and D1χ(2), so

the classification rule with WI is not based on a distance. Once we impose the positiveness on

the weights, method WD gives positive weights for the variable associated to D1χ(1) and D1χ(2)

and zero weights for the variable associated to χ(1) and χ(2). So, the classification rule with WD

is a semidistance. In this setting and in the previous one, method WD selects the variable that

has lower misclassification rates.
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Figure 3.2: First simulation setting results: (a) Boxplots of the misclassification rates for methods

DFM0, DFM1, WI and WD ; (b) Boxplots of the weights obtained for method WI ; (c) Boxplots of the

weights obtained for method WD.
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Figure 3.3: Second simulation setting results: (a) Boxplots of the misclassification rates for methods

DFM0, DFM1, WI and WD ; (b) Boxplots of the weights obtained for method WI ; (c) Boxplots of the

weights obtained for method WD.
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We have considered up to the second derivative in this exercise. Figure 3.4, containing the

scatter plots of the three discriminant variables, indicates that the combination of the two first

discriminant variables has a good discriminant power. The histograms of this figure show that

x2 is the variable with the highest discriminant power, as the weights (coefficients) will confirm

in the boxplots of this exercise. In figure 3.5 a bi- and three-dimensional representations of

the functional data are given, as well as the plot of the discriminant functions provided by our

methods. Finally, in figure 3.6 we present the results for the third simulation setting. Figure 3.6(a)

gives the boxplots of the misclassification rate estimates for the methods. In this case, method

DFM0 is again outperformed by method DFM1, which obtains misclassification rates around

the expected 25%. Both methods perform worse than the weighted procedures, WI and WD ;

method WI has the best performance. Here, the improvement comes from the combination of

variables associated to functions and their first derivatives. Derivatives of higher order are useless,

although the presence of these variables does not affect the performance of our proposals. As

expected, the method DFM2 classifies at random. Figures 3.6(b) and 3.6(c) give the boxplots of

the estimated weights for methods WI and WD. In this case, method WI gives positive weights for

the variable associated to χ(1) and χ(2) in more than 25% of the replications and negative weights

in the remaining ones. In all replications, WI gives negative weights for the variable associated to

D1χ(1) and D1χ(2). For those replications where there are sign differences, the classification rule

with WI is not a distance. This “inconvenience” is avoided by using the method WD. In this

setting, the classification rule with WD is a semidistance in all cases and a distance in 75% of the

replications.

3.3.1 Theoretical Misclassification Rates

The models of the previous simulation exercises were chosen to calculate these quantities easily;

nevertheless, the complex and formal way is also included. Notice that, to evaluate the global error

rate, e is usually chosen at random from the populations with the same probability (if n1 = n2;

the empirical counterpart is that the testing samples would have the same size, m1 = m2).

Simulation Exercise 1

The misclassification rate for method DFM0 was calculated as

p(E) =

(
1

2

1

2

)
· 1

2
+

(
1

2

1

2

)
· 1

2
=

1

4
. (3.39)

On the other hand, for DFM1,

p(E) =
1

2
· 1

2
+

1

2
· 1

2
=

1

2
. (3.40)

These rates can be calculated in a more explicit way by using the following complementary

probabilities.

Since E(X (1)) 6= E(X (2)), the variable X1 can be used to classify.
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Figure 3.4: Third exercise: prospective plots for the first three discriminant variables
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Figure 3.5: Third exercise: descriptive figures
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Figure 3.6: Third simulation setting results: (a) Boxplots of the misclassification rates for methods

DFM0, DFM1, DFM2, WI and WD ; (b) Boxplots of the weights obtained for method WI ; (c) Boxplots

of the weights obtained for method WD.
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The probability of classifying correctly an element of P (1) with DFM0 is:

p (X1 < 0 | X ∈ P (1)) = p (d(X ,E(X (1))) < d(X ,E(X (2))) | X ∈ P (1))

= p

(∫ 1

0

|t+ U − t− 1

2
|dt <

∫ 1

0

|t+ U − t− 1|dt | U ∼ U(0, 1)

)
= p

(
|U − 1

2
| < |U − 1| | U ∼ U(0, 1)

)
=

3

4
(3.41)

(Hint: Do not calculate anything in the last step, draw a segment.)

The probability of classifying correctly an element of P (2) with DFM0 is:

p (X1 > 0 | X ∈ P (2)) = p (d(X ,E(X (1))) > d(X ,E(X (2))) | X ∈ P (2))

= p

(∫ 1

0

|t+ V − t− 1

2
|dt >

∫ 1

0

|t+ V − t− 1|dt | V ∼ U(1/2, 3/2)

)
= p

(
|V − 1

2
| > |V − 1| | V ∼ U(1/2, 3/2)

)
=

3

4
(3.42)

Now, supposing that the element is chosen at random from both populations with the same

probability

p(E) =

(
1− 3

4

)
· 1

2
+

(
1− 3

4

)
· 1

2
=

1

4
. (3.43)

On the other hand, since E(DX (1)) = E(DX (2)), the variable X2 cannot be used to classify;

due to the fact that |X2| ≤ d(E(DX (1)),E(DX (2))) = 0, the questions X2 < 0? and X2 > 0? make

no sense. The same happens for any variable Xj, j ≥ 2.
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Simulation Exercise 2

The rate for method DFM1 was calculated as

p(E) =
1

4
· 1

2
+ 0 · 1

2
=

1

8
. (3.44)

These rates can be calculated —or tried— in a more explicit way by using the following

complementary probabilities.

Since E(X (1)) 6= E(X (2)), the variable X1 can be used to classify.

The probability of classifying correctly an element of P (1) with DFM0 is:

p (X1 < 0 | X ∈ P (1)) = p (d(X ,E(X (1))) < d(X ,E(X (2))) | X ∈ P (1))

= p

(∫ 1

0

|(t+ U)2 − (t+
1

2
)2|dt <

∫ 1

0

|(t+ U)2 − t2 − 1

2
|dt | U ∼ U(0, 1)

)
= p

(∫ 1

0

|2Ut− t+ U2 − 1

4
|dt <

∫ 1

0

|2Ut+ U2 − 1

2
|dt | U ∼ U(0, 1)

)
= p

(∫ 1

0

|2Ut+ U2 − 1

2
+ (

1

4
− t)|dt

<

∫ 1

0

|2Ut+ U2 − 1

2
|dt | U ∼ U(0, 1)

)
(3.45)

The probability of classifying correctly an element of P (2) with DFM0 is:

p (X1 > 0 | X ∈ P (2)) = p (d(X ,E(X (1))) > d(X ,E(X (2))) | X ∈ P (2))

= p

(∫ 1

0

|t2 + V − (t+
1

2
)2|dt >

∫ 1

0

|t2 + V − t2 − 1

2
|dt | V ∼ U(0, 1)

)
= p

(∫ 1

0

|V − t− 1

4
|dt >

∫ 1

0

|V − 1

2
|dt | V ∼ U(0, 1)

)
= p

(∫ 1

0

|V − 1

2
+ (

1

4
− t)|dt > |V − 1

2
| | V ∼ U(0, 1)

)
(3.46)

Since E(DX (1)) 6= E(DX (2)), the variable X2 can be used to classify.

The probability of classifying correctly an element of P (1) with DFM1 is:

p (X2 < 0 | X ∈ P (1)) = p (d(DX ,E(DX (1))) < d(DX ,E(DX (2))) | X ∈ P (1))

= p

(∫ 1

0

|2(t+ U)− 2(t+
1

2
)|dt <

∫ 1

0

|2(t+ U)− 2t|dt | U ∼ U(0, 1)

)
= p (|2U − 1| < |2U | | U ∼ U(0, 1)) =

3

4
(3.47)

The probability of classifying correctly an element of P (2) with DFM1 is:

p (X2 > 0 | X ∈ P (2)) = p (d(DX ,E(DX (1))) > d(DX ,E(DX (2))) | X ∈ P (2))

= p

(∫ 1

0

|2t− 2(t+
1

2
)|dt >

∫ 1

0

|2t− 2t|dt | V ∼ U(0, 1)

)
= p (1 > 0 | V ∼ U(0, 1)) = 1 (3.48)
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Now,

p(E) =

(
1− 3

4

)
· 1

2
+ (1− 1) · 1

2
=

1

8
. (3.49)

Since E(D2X (1)) = E(D2X (2)), the variable X3 cannot be used to classify. The same happens

for any variable Xj, j ≥ 3.

Simulation Exercise 3

Finally, the rate for method DFM1 can be calculated as

p(E) =
1

2
· 1

2
+

1

2
· 1

2
=

1

2
. (3.50)

Again, these rates can be calculated —or tried— more explicitly by using the following prob-

abilities.

Since E(X (1)) 6= E(X (2)), the variable X1 can be used to classify.

The probability of classifying correctly an element of P (1) with DFM0 is:

p (X1 < 0 | X ∈ P (1)) = p (d(X ,E(X (1))) < d(X ,E(X (2))) | X ∈ P (1))

= p

(∫ 1

0

|(t+ U)2 +
5

4
− (t+

1

2
)2 − 5

4
|dt <

∫ 1

0

|(t+ U)2 +
5

4
− (t+ 1)2|dt | U ∼ U(0, 1)

)
= p

(∫ 1

0

|(2t+ U +
1

2
)(U − 1

2
)|dt <

∫ 1

0

|(2t+ U + 1)(U − 1) +
5

4
|dt | U ∼ U(0, 1)

)
= p

(∫ 1

0

|2(U − 1

2
)t+ U2 − 1

4
|dt <

∫ 1

0

|2(U − 1)t+ U2 +
1

4
|dt | U ∼ U(0, 1)

)
(3.51)

The probability of classifying correctly an element of P (2) with DFM0 is:

p (X1 > 0 | X ∈ P (2)) = p (d(X ,E(X (1))) > d(X ,E(X (2))) | X ∈ P (2))

= p

(∫ 1

0

|(t+ V )2 − (t+
1

2
)2 − 5

4
|dt >

∫ 1

0

|(t+ V )2 − (t+ 1)2|dt | V ∼ U(1/2, 3/2)

)
= p

(∫ 1

0

|(2t+ V +
1

2
)(V − 1

2
)− 5

4
|dt >

∫ 1

0

|(2t+ V + 1)(V − 1)|dt | V ∼ U(1/2, 3/2)

)
= p

(∫ 1

0

|2(V − 1

2
)t+ V 2 − 3

2
|dt > |2(V − 1)t+ V 2 − 1| | V ∼ U(1/2, 3/2)

)
(3.52)

Since E(DX (1)) 6= E(DX (2)), the variable X2 can be used to classify.

The probability of classifying correctly an element of P (1) with DFM1 is:

p (X2 < 0 | X ∈ P (1)) = p (d(DX ,E(DX (1))) < d(DX ,E(DX (2))) | X ∈ P (1))

= p

(∫ 1

0

|2(t+ U)− 2(t+
1

2
)|dt <

∫ 1

0

|2(t+ U)− 2(t+ 1)|dt | U ∼ U(0, 1)

)
= p (|2U − 1| < |2U − 2| | U ∼ U(0, 1)) =

3

4
(3.53)
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The probability of classifying correctly an element of P (2) with DFM1 is:

p (X2 > 0 | X ∈ P (2)) = p (d(DX ,E(DX (1))) > d(DX ,E(DX (2))) | X ∈ P (2))

= p

(∫ 1

0

|2(t+ V )− 2(t+
1

2
)|dt >

∫ 1

0

|2(t+ V )− 2(t+ 1)|dt | V ∼ U(1/2, 3/2)

)
= p (|2V − 1| > |2V − 2| | V ∼ U(1/2, 3/2)) =

3

4
(3.54)

Finally,

p(E) =

(
1− 3

4

)
· 1

2
+

(
1− 3

4

)
· 1

2
=

1

4
. (3.55)

Since E(D2X (1)) = E(D2X (2)), the variable X3 cannot be used to classify. The same happens

for any variable Xj, j ≥ 3.

3.4 Real Data Examples

In this section we illustrate the performance of our proposal in two benchmark data sets: (a)

Spectrometric data set, consisting of 215 near-infrared spectra of meat samples obtained by a

Tecator Infratec Food and Feed Analyzer; (b) Growth curves data set, consisting of the height (in

centimeters) of 44 girls and 39 boys measured at a set of 31 different instances between the ages

1 and 18.

In both examples, the original data was smoothed using a cubic smoothing spline with smooth-

ing parameter equal to 1/(1 +h3/6), where h is the average spacing of the data sites (see De Boor

[1978]).

In this section, the nomenclature for the different versions of the algorithm is that used in the

previous section. Furthermore,

• DFM2 denotes the classification with the distance to the sample functional mean, calculated

using the second derivatives of functions in the training set. That is, using the rule{
k = 1 if x3 < 0

k = 2 otherwise
. (3.56)

• Now the weighted approaches (algorithms 3 and 4) take into account up to the second

derivative by considering

x = (x1, x2, x3)t. (3.57)

3.4.1 Spectrometric Data

The classification problem in the spectrometric data set consists in separating meat samples with

a high fat content (more than 20%) from samples with low fat content (less than 20%). Among the

215 samples, 77 have high fat content and 138 have low fat content. Figure 3.7 shows a sample of
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Figure 3.7: Sample from the spectrometric data set (wavelengths 850–1050 nm): (a) Data; (b) First

derivative; (c) Second derivative.
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these 100-channel absorbance spectrum in the wavelength 850–1050 nm and the first and second

derivatives.

Among others, Ferraty and Vieu (2003), Rossi and Villa (2006) and Li and Yu (2008) had

considered the original spectrum and its derivatives for classification purpose and had concluded

that the second derivative produces the lower misclassification rates.

In order to evaluate the performance of our proposal, we will split the data set into 120 spectra

for training and 95 spectra for testing as in Rossi and Villa (2006) and Li and Yu (2008). The

classification results shown in figure 3.8 are based on 1000 replications. Methods WI and WD

obtain a mean misclassification rate equal to 2.02% and 2.32%, respectively. They improve the

classification rule based on the second derivative, DFM2, which obtains 3.70%.

In this example, method WI gives positive weights to the variable associated with χ(1) and

χ(2), and negative —but higher in module— weights for the variables associated with D1χ(1) and

D1χ(2) and with D2χ(1) and D2χ(2); so the classification rule with WI is not based on a distance.

Method WD gives positive weights to the variables associated with D1χ(1) and D1χ(2) and with

D2χ(1) and D2χ(2), and zero weights for the variable associated with χ(1) and χ(2). Notice that

both procedures give the higher weights to the variable associated with D2χ(1) and D2χ(2), which

is consistent with the results of Ferraty and Vieu (2003), Rossi and Villa (2006) and Li and Yu

(2008).

The functional support vector machine proposed by Rossi and Villa (2006) obtains 3.28%

(7.5%) using a linear (Gaussian) kernel and the spectra, and a 2.6% (3.28%) using a Gaussian

(linear) kernel and the second derivative of the spectra.
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Figure 3.8: Spectrometric data set classification results: (a) Boxplots of the misclassification rates for

methods DFM0, DFM1, DFM2, WI and WD ; (b) Boxplots of the weights obtained for method WI ; (c)

Boxplots of the weights obtained for method WD.
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The nonparametric functional method proposed by Ferraty and Vieu (2003) obtains a mean

error of around 2% using the second derivative. Notice that Ferraty and Vieu (2003) use a

training set with 160 spectra. In that setting, our mean misclassification rates are equal to 1.89%

and 2.27%, respectively.

Li and Yu (2008) obtain 3.98%, 2.91% and 1.09% using the raw data, the first derivative and

the second derivative, respectively. Notice that Li and Yu’s method selects the data segments

where the two populations have large differences, and then it combines the linear discriminant as

a data reduction tool and the support vector machine as a classifier. These authors’ method has

three tuning parameters: number of segments, separation amongst segments and the regularization

parameter of the support vector machine.

If we repeat our procedures using the channels in the wavelengths 1000–1050 nm, then we

obtain 1.49% and 1.30%, using WI and WD, respectively. Notice that these results show that in

some cases the additional nonnegative constraints improve the performance of our algorithm 3.

Figure 3.9 shows a sample of these spectrum in the wavelength 1000–1050 nm and the first and

second derivatives. This segment, 1000–1050 nm, was obtained by cross-validation through a grid

search. The design of a segmentation approach for selecting more than one segment is beyond the

scope of this thesis and probably deserves a separate body of research.
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Figure 3.9: Sample from the spectrometric data set (wavelengths 1000–1050 nm): (a) Data; (b) First

derivative; (c) Second derivative.
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3.4.2 Growth Data

The classification problem in the growth data set consists in separating samples by sex, taking

the growth curves as variables. Figure 3.10 shows a sample of these curves, measured in ages

ranging from 1 to 18, and their first and second derivatives. López-Pintado and Romo (2006) had

considered the growth curves (but not their derivatives) for classification purpose.

In order to evaluate the performance of our proposal, we will split the data set into 60 curves

for training and the remaining 33 for testing. The classification results shown in figure 3.11 are

based on 1000 replications. Weighted methods WI and WD have similar performance, with means

misclassification rates equal to 3.65% and 3.75%, respectively. They improve the classification rules

based on the raw data, on the first derivative or on the second derivative, which obtain 31.08%,

5.30% and 18.85%, respectively. The best result with the depth-based classification procedure

proposed by López-Pintado and Romo (2006) was 14.86%.

In this example, method WI gives positive weights for the variable associated to D2χ(1) and

D2χ(2) and negative (but higher in module) weights for the variables associated to D1χ(1) and

D1χ(2); so the classification rule with WI is not based on a distance. Method WD gives positive

weights for the variables associated to χ(1) and χ(2) and to D1χ(1) and D1χ(2); then, the classification

rule is based on a distance. Moreover, these weights of WD indicate that it is not necessary to

use x3 (second derivative) when a combination of x1 and x2 (raw data and first derivative) is

considered.
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Figure 3.10: Sample from the growth data set: (a) Data; (b) First derivative; (c) Second derivative.
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Figure 3.11: Growth data set classification results: (a) Boxplots of the misclassification rates for methods

DFM0, DFM1, DFM2, WI and WD ; (b) Boxplots of the weights obtained for method WI ; (c) Boxplots

of the weights obtained for method WD.
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3.5 Conclusions

In this chapter we have proposed a new approach for discriminating functional data. This method

involves the use of distances to a representative function and its successive derivatives. Our

simulation studies and our applications show that the method performs very well, resulting in

small training and testing classification errors. Applications to real data show that our procedure

performs as well as —and in some cases better than— other classifications methods. In addition,

our methodology provides, through the weights, information about the importance of each data

transformation. Finally, some adaptability of our methodology to the different types of functional

data can be achieved by selecting the distance d(·, ·) or the multivariate classification technique.
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Chapter 4

Extensions and Further Work

Summary: In this chapter, possible generalisations and forthcoming work, for both

classification methods, are itemised and outlined briefly.

There is much theory available on multivariate, time series and functional data, so techniques

from the three frameworks can be applied, respectively, to the original time series and curves

or to the constructed curves and variables: graphical representations, transformations, inference,

typicality and robustness, etcetera. For example, graphical methods can be used for the detection

of outliers, through the representation of the curves —in our first proposal— or our multivariate

variables —in the second.

Nevertheless, a great complexity appears if we want to connect both theories, taking into

account the fact that in our cases the functional or multivariate characters come, respectively,

from original time series and functional data, with transformations and distance measurements.

4.1 Time Series Method

4.1.1 More than Two Populations

The generalisation to a K-group classification, with K > 2, is trivial. In the algorithms of section

2.3, it is enough to consider the reference curves of the K groups and apply the classification rule

k = argmin{1,...,K} {d(χ(λ),R(k)(λ))} (4.1)

with R(k)(λ) = χ̄(k)(λ) or R(k)(λ) =
α

χ (k)(λ), respectively.

4.1.2 Clustering

From our first proposal it is concluded that the spectral distribution function contains information

which is useful for the supervised classification of time series. The same information can be used
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for the unsupervised classification —or clustering— of time series, by tackling the correspond-

ing/associated functional data problem in the frequency domain: some references on this subject

are mentioned at the end of section 8.6 of Ramsay and Silverman (2006) and —with extension

and in the nonparametric framework— in chapter 9 of Ferraty and Vieu (2006).

4.1.3 Other Depth Definitions

Other different definitions of depth can be considered, for example: Fraiman and Muniz (2001),

or Cuevas et al. (2007).

4.2 Functional Data Method

4.2.1 Classical Assumptions

Some interesting questions are related to the fulfilment of the linear discriminant analysis assump-

tions, the performance when there are departures from them, and possible corrections of these

departures or extensions in order to deal with them. In general, the linear discriminant analysis,

when used for classification, is quite robust to departures from the assumptions, especially for

large sample sizes. In practice the multivariate techniques can be applied to our discriminant

variables, but it would be very interesting to do some simulations studying the distribution of

these variables for different functional models and distances.

The normality assumption can be tested, that is, how far from the normal distribution our

variables X1, . . . , Xp are. Under normality, the method becomes optimal; otherwise, functional

or multivariate transformations to achieve normality could be considered. The normality of the

discriminant variables implies the normality of the discriminant functions, so the rejection of one

normality would imply the rejection of the other. On the other hand, since the discriminant anal-

ysis is somewhat affected by the presence of atypical values, multivariate or functional techniques

could be used to leave these values out.

Equally important is testing the homoscedasticity assumption, that is, if Σ(k)

X = ΣX, ∀k, in

order to combine or not the information in a unique pooled estimator of the covariance matrix.

When the equality is rejected, quadratic —instead of linear— discriminant analysis should be

used in our approach. Nevertheless, the quadratic analysis is more sensitive to the normality

assumption. On the other hand, if the equality holds, the use of the quadratic version implies a

loss of efficiency.

When it is not possible to reject the equality of the covariance matrices, it is important to test

the equality of the means, that is, the hyphotesis µ(k)

X = µX, ∀k. If this equality cannot be rejected

either, it is difficult to ensure from the samples that, in fact, there are two different underlying

populations.
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Finally, if high correlations were observed in the multivariate samples (induced by correlations

in the functional samples), the linear discriminant analysis can be substituted by the penalized

discriminant analysis of Hastie et al. (1995), a variant of the classical discriminant analysis

specifically designed to cope with correlations.

4.2.2 Additional Constraint Embedding

The quadratic-form optimization problem arises frequently in literature. When there is a con-

straint, a known approach consists in finding an equivalent optimization problem without the

constraint. This is done by embedding the constraint into the quadratic form; analitically, by

introducing the constraint multipliers in the matrix of the quadratic form. For example, Jagan-

nathan and Ma (2003) transform the minimum variance portfolio optimization problem

a = argmin
{
atSa

}
subject to

{ ∑
i ai = 1

0 ≤ ai ≤ ā
(4.2)

into the equivalent problem

a = argmin
{

atS̃a
}

(4.3)

by considering S̃ = S + (δ1t + 1δt)− (λ1t + 1λt), where 1 is the column vector of ones.

For our optimization problem

a = argmax

{
atBa

atWa

}
subject to a ≥ 0 [3.1]

we would be interested in defining new matrices B̃ and W̃ so as to obtain the equivalent opti-

mization problem

a = argmax

{
atB̃a

atW̃a

}
. (4.4)

This would allow using all the theory of the Fisher’s discriminant analysis; for example, the

expression of the discriminant function for K = 2 (two populations), when W̃ is nonsingular, will

be:

y = atnx = (x(1) − x(2))tW̃−1x. (4.5)

More generally, for this unconstrained optimization problem general theory could be considered

or developed, as that of McDonald (1979) and Kiers (1995) for quotients of quadratic forms. Thus,

this constraint embedding problem has general theoretical interest.

4.2.3 Additional Constraint Avoidance

As we have mentioned in section 3.2.6, we introduced the nonnegativeness constraints for theo-

retical reasons. Perhaps the same theoretical advantage could sometimes be achieved through

a different way; for example, by applying a transformation t : Rp → Rp to the aF coefficients,
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instead of imposing the additional constraint. That is, by transforming the classical discriminant

function in the following way:

ỹ = t(aF )tx =

p∑
i=1

ti(aF )xi, (4.6)

where t = (t1, . . . , tp)
t with ti : Rp −→ R such that ti(a) ≥ 0, ∀i = 1, . . . , p.

Advantages

It seems that this approach would add several advantages. On the one hand, the core optimiza-

tion problem of the methodology would again be the classical Fisher’s problem, so the usual

interpretation of aF and the available software could be accessed. On the other hand, several

transformations, t(·), could be tested without having to solve the optimization problem again,

that is, without computing aF again.

Disadvantages

Let us notice that the election of t(·) is an ad hoc election, while the optimization problem —with

the nonnegativeness restriction— is based on a general and transparent criterion.

Deformation of the Scale

Some tools of the vectorial calculus, concretely the divergence, indicate that in this transformation

there is an implicit deformation (in the sense of contraction or dilatation of volumes) of the

mathematical space Rp, measured by:

div(t) = ∇t · t =

p∑
i=1

∂ti
∂ai

. (4.7)

See section 3.4 of Marsden and Tromba (1991) for mentioned physical interpretation of the diver-

gence (in section 8.4 of the same book there is a different interpretation in terms of fluxes and

integrals).

Some Cases

1. Isotropic: If t = (t, . . . , t)t

2. Anisotropic: If t = (t1, . . . , tp)
t

3. Unidimensional components: If t = (t1(a1), . . . , tp(ap))
t, that is, with ti : R→ R.
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Geometrical Interpretation

Following the geometrical interpretations of section 1.2.5, the isotropic substitution

(a1, . . . , ap) −→ (t(a), . . . , t(a)) (4.8)

is interpreted as a subsequent change —guided by t(·)— of the projection direction (with, in

general, an implicit homothecy).

For the anisotropic case, it can be written

ti(a)xi = t(a)x̃i, (4.9)

for some t(·), and the substitution

(a1, . . . , ap) −→ (t1(a), . . . , tp(a)) (4.10)

is now interpreted as a subsequent change —guided by t(·)— of the projection direction (with,

in general, an implicit homothecy) followed by a rescaling in the axes —determined by x̃ =

(x̃1, . . . , x̃p)
t— to obtain a new reference system.

The Classification

In the previous cases, the classification rule would be{
k = 1 if ỹ > t(aF )t 1

2
(x(1) + x(2))

k = 2 otherwise
, (4.11)

where the value t(aF )t 1
2
(x(1) + x(2)) would be the new cutoff point.

Remark 37 Under normality (of the multivariate variables), it is not possible that the classifi-

cation with (4.11) would improve the classification with (D.40) of appendix D.4, as in this case

t(aF ) would have probably been found first, instead of aF ; nevertheless, some improvement can

be achieved when the normality does not hold.

Remark 38 After the coefficients have been transformed, ỹ is still a linear application, so the

statements of remark 61 in appendix D still hold. Nonetheless, the transformation implies a change

of the subspace into which data are projected; then, the role of the different variables also changes,

implying that the classification rule (4.11) is different to the classical rule (D.40) in appendix D.

4.2.4 Transformation Importance

Our methodology provides information about the usefulness of the different function derivatives

for classification purposes. In the same way, we could try to obtain information over data trans-

formations different from derivation, that is, using the following discriminant variables instead of

(3.23),

xi = d(Ti(χ), Ti(χ(1)))− d(Ti(χ), Ti(χ(2))), (4.12)
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for i = 1, 2, . . . , p, where Ti(χ(k)) = 1
nk

∑nk
e=1 Ti(χ

(k)
e ), k = 1, 2, with Ti(·) being an application

between two functional spaces.

Notice that the information of different transformations could be combined (indirectly, through

the distances) using an expression similar to (3.33), that is, with

y(x) = atx =

p∑
i=1

aixi

=

p∑
i=1

aid(Ti(χ), Ti(χ(1)))−
p∑
i=1

aid(Ti(χ), Ti(χ(2))). (4.13)

Remark 39 In some cases it might be convenient to substitute the reference function

R(k)(λ) = Ti(χ(k)) (4.14)

with a more proper one.

4.2.5 Distance Importance

Given a data set, which characteristics are the important ones depends on the aim of the study for

which the data are being used. For example, a peak in smooth curves can indicate the presence

of an event, and depending on whether or not there is interest in this event —or even in avoiding

it— one particular distance should be used: ‖χ‖ = maxt∈I χ(t) or ‖χ‖ =
∫
I
χ(t)dt. Moreover,

as mentioned in remark ??, an inappropriate choice of the distance can imply a severe loss of

efficiency.

Then, similarly as in the previous subsection, the importance of several different distances can

be studied using the variables

xi = di(χ, χ(1))− di(χ, χ(2)) (4.15)

for i = 1, 2, . . . , p, where di(·, ·) are different distances and χ = 1
nk

∑nk
e=1 χ

(k)
e , k = 1, 2.

An important fact is that, again with an expression similar to (3.33), combinations of distances

can be constructed:

y(x) = atx =

p∑
i=1

aixi

=

p∑
i=1

aidi(χ, χ(1))−
p∑
i=1

aidi(χ, χ(2)). (4.16)

Remark 40 Again, in some cases it might be convenient to substitute the reference function

R(k)(λ) = χ(k) (4.17)

with a more proper one.
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4.2.6 Several Discriminant Functions

The few two or three discriminant variables considered by us justified the use of only one discrim-

inant function; in fact, for two-group classification, no more functions can be considered. In a K-

-group classification problem, some of the previous extensions could require several discriminant

variables; for example, when many discriminant variables are considered or when more information

needs to be captured. In this case, a multivariate compound variable y has to be constructed in

several consecutive steps, as in the classical discriminant analysis. Then, a possible classification

rule would be

k = argmin{1,...,K} {d(y(x),y(x(k)))} , (4.18)

where now d(·, ·) is a distance in Rq (here q is the lenght of y).

4.2.7 Other Classification Methods

The use of the linear discriminant analysis in the algorithms 3 and 4 (section 3.2.5) is not com-

pulsory, and this technique can be substituted with another one. That is, once the multivariate

variables are defined they can be used for any other multivariate classification technique.

If the new method constructs a multivariate compound variable y, the classification criterion

can again be (4.18). Finally, if the weights in y are nonnegative, our additional constraint would

be unnecessary.

88



Conclusions

Although our proposals are not based on complex ideas, the theory included in the first chapter

is necessary for a deep understanding of the second and third chapters. The different types of

mathematical objects have been explained, including the basic statistical tools for inducing general

information (models) from particular samples (data). At the end of the opening chapter, the

problem of classification was presented in a way that the basic concepts of “property”, “distance”

and “criterion” were highlighted.

In chapter two we have proposed a new frequency domain approach for time series classification

based on the integrated periodograms of the series. When series are nonstationary, they are split

into blocks and the integrated periodograms of the blocks are merged to construct a curve. This

idea rests on the assumption that series are locally stationary; an example definition of locally

stationary processes has been given. Since the integrated periodogram is a function, the statistical

tools for functional data analysis can be applied; concretely, the concept of depth, applied to

functions, allows the use of a robust version of the functional mean. In our classification procedure,

new series are assigned to the class minimizing the distance between its corresponding curve and

the group mean curve. Since the group mean can be affected by the presence of outliers, robustness

of the classification method is achieved by substituting the mean curve with the α-trimmed mean,

where for each group only the deepest elements are averaged. To evaluate our proposal in different

scenarios, we have done simulation exercises containing several models and parameters, with both

stationary and nonstationary series, as well as with different types of contamination. We have also

illustrated the performance of our procedure in a real benchmark data set. Our proposal provides

small error rates, robustness, and good computational performance: properties which make the

methodology suitable for time series classification. The procedure suggests that the integrated

periodogram contains useful information for classifying time series.

This leads to both the functional data classification and the search of a procedure for selecting

the derivative (or the crude functions) with the highest discriminant power. In chapter three

we have proposed a new approach for discriminating functional data. This method involves the

use of distances to a representative function and its successive derivatives. Since the information

useful for discriminating is summarized in multivariate data, the appendix D is devoted to the

most classical linear discriminant analysis. This method inspires the classificatory method and the

introduction of an additional requirement that provides theoretical advantages. Our simulation
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studies and our applications show that the method performs very well, resulting in small training

and testing classification errors. Applications to real data show that our procedure performs as well

as —and in some cases better than— other classifications methods. Moreover, our methodology

provides, through the weights, information about the importance of each data transformation.

Some adaptability of our methodology to the different types of functional data can be achieved by

selecting the distance d(·, ·), the transformation T (·) or the multivariate classification technique

providing y.

Finally, our proposals are quick and easy to understand. In Statistics, there is no method

which is considered to be “the best”, and ours have shown good performance in several scenarios.

In chapter four, many possible extensions and further work has been outlined.
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Appendix A

Mathematical Structures

Although they are usually tacitly supposed, in this section we include the main theoretical under-

lying structures involved in this document. Let E be a set of mathematical objects (here they

are numbers, vectors, matrices, sequences or functions). Briefly speaking, the algebra structures

allow the operations among the elements of E; the topological and analysis structures introduce

ideas about proximity, convergence and limits; while the inner product allows geometrical opera-

tions such as projections, angles or orthogonality; finally, the theory-measure structures provide a

framework where measuring the size of the subsets of E that are of interest. The different kinds

of structures are usually overlapped and some compatibility conditions are neccesary.

A.1 Algebra Structures

A.1.1 Group

Definition 37 Given a set G and an inner operation � defined on G × G, then G is said to be

closed with respect to the operation if g1 � g2 ∈ G, gi ∈ G, i = 1, 2.

Definition 38 Given a set G, the pair (G,+) is a group with respect to a well-defined sum (that

is, with G being closed) if

(1g+) Associativity: (g1 + g2) + g3 = g1 + (g2 + g3), gi ∈ G, i = 1, 2, 3.

(2g+) Identity or neutral element: There is an element 0G such that g + 0G = 0G + g = g, g ∈ G.

(3g+) Inverse element: For all g ∈ G there is an element, denoted by −g, such that (−g) + g =

g + (−g) = 0G.

Definition 39 A pair (G,+) is a commutative group with respect to + if it is a group and

(4g+) Commutativity: g1 + g2 = g2 + g1, gi ∈ G, i = 1, 2.
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Definition 40 Given a set G, the pair (G, ∗) is a group with respect to a (well-defined) product

if

(1g*) Associativity: (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3), gi ∈ G, i = 1, 2, 3.

(2g*) Identity or neutral element: There is an element 1G such that 1G ∗ g = g ∗ 1G = g, g ∈ G.

(3g*) Inverse element: For g ∈ G there is an element, denoted by g−1, such that g∗g−1 = g−1∗g =

1G.

Definition 41 A pair (G, ∗) is a commutative group with respect to ∗ if is a group and

(4g*) Commutativity: g1 ∗ g2 = g2 ∗ g1, gi ∈ G, i = 1, 2.

A.1.2 Field

Definition 42 Given a set K and any two closed operations, the triple (K,+, ∗) is a field if

(1f) (K,+) is a commutative group.

(2f) (K, ∗) is a commutative group.

(3f) (k1 + k2) ∗ k3 = k1 ∗ k3 + k2 ∗ k3, ki ∈ K, i = 1, 2, 3.

A.1.3 Linear Space

Definition 43 Given a set E, an outer operation ·K defined on K × E, where K is a field, is

said to be closed if k · e ∈ E, k ∈ K, e ∈ E.

Definition 44 Given a set E and two (well-defined) operations, an inner sum operation + and

an outer product operation ·K, where K is a field (usually K = R or K = C); then the triple

(E,+, ·K) is a linear —or vectorial— space if

(1s) (E,+) is a commutative group.

(2s) (E, ·K) verifies

(2f.1) 1K · e = e, ∀e ∈ E.

(2f.2) k1 · (k2 · e) = (k1 · k2) · e, ki ∈ K, i = 1, 2, ∀e ∈ E.

(3s) (k1 + k2) · e = k1 · e+ k2 · e, ki ∈ K, i = 1, 2, ∀e ∈ E.

(4s) k · (e1 + e2) = k · e1 + k · e2, k ∈ K, ∀ei ∈ E, i = 1, 2.

92



Linear Combinations

Definition 45 In the linear space (E,+, ·K), a (finite) linear combination is any expression of

the form
n∑
i

kiψi, (A.1)

where ψi ∈ E and ki ∈ K, for i = 1, . . . , n.

Thus, to be able to work with linear combinations of elements (belonging to the same space), a

linear space structure is necessary.

Linear Independence

Definition 46 In the linear space (E,+, ·K), a set of n elements {ψi} ⊂ E is said to be linearly

independent if
n∑
i

kiψi = 0E, (A.2)

where ki ∈ K, i = 1, . . . , n, implies that ki = 0K for all i.

This means that 0E can be obtained from ψi ∈ E, i = 1, . . . , n, only by multiplying each ψi for

“zero”, that is, for 0K, the neutral element of the field with respect to the sum.

Generation

Definition 47 In the linear space (E,+, ·K), a set of n elements {ψi} ⊂ E form a generator set

of the space if any element e ∈ E can be expressed as a linear combination

e =
∑
i

kiψi, (A.3)

with ki ∈ K, i = 1, . . . , n.

Bases

Definition 48 A set {ψi} of elements of E form a basis of the space if they are both a linearly

independent set and a generator set. The basis of a space is not usually unique. The size of a

basis —possibly infinite— is the dimension of the space, denoted by dim(E).

The vectors and matrices of this thesis are related to finite-dimensional spaces, whose theory

is “simple”. To study sequences and functions, more “complex” infinite-dimensional spaces are

necessary.
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Approximations

Sometimes an approximation of the element e is sufficient to work with, and —in spaces of dimen-

sion greater than p— combinations of the form

ẽ =

p∑
i=1

ciψi = ctψ, (A.4)

are used, where c = (c1, c2, . . . , cp)
t and ψ = (ψ1, ψ2, . . . , ψp)

t.

The concept of convergence (defined in sections A.2 and A.3) is closely related to these approx-

imations. At the same time, to quantify the accuracy of an approximation, some additional

analysis structure is necessary. In general, in linear spaces the coefficients c are not easy to

calculate, even in normed spaces (defined below), and the inner product operation, which will be

defined for the pre- and Hilbert spaces (also defined below), is quite useful (see next section).

Linear Subspaces

Definition 49 Given a linear space (E,+, ·K), the subset V ⊂ E is a linear subspace if (V,+, ·K)

is also a linear space.

As the linear subspace inherits all the properties of the linear space, the only requirement is

that the subset must be closed with respect to the operations, that is

(1ss) v1 + v2 ∈ V, vi ∈ V, i = 1, 2.

(2ss) k · v ∈ V, ∀k ∈ K, ∀v ∈ V .

Definition 50 Given two linear subspaces V1 and V2 of a linear space E, their sum is defined as

V1 + V2 = {v1 + v2 | vi ∈ Vi, i = 1, 2}. (A.5)

Definition 51 A linear space E is the direct sum of two linear subspaces V1 and V2 if

(1ds) V1 + V2 = E,

(2ds) V1 ∩ V2 = {0E}

and it is denoted as E = V1 ⊕ V2.

Proposition 5 Given two linear subspaces V1 and V2 of E, it holds that E = V1 ⊕ V2 if and only

if any element e ∈ E can be expressed uniquely as e = v1 + v2 with vi ∈ Vi, i = 1, 2.

Proof. If there were another expression, v1 + v2 = e = v′1 + v′2, then V1 3 v1 − v′1 = v′2 − v2 ∈ V2,

so v1 − v′1 = 0E = v′2 − v2, which implies that v1 = v′1 and v′2 = v2.

On the other hand, if e ∈ V1 ∩ V2 then e could be expressed as 0E + e = e + 0E, and, as the

decomposition is unique, it is concluded that e = 0E.

�
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A.2 Analysis Structures

In this section, the categories of spaces are shown in order of generality from highest to lowest.

A.2.1 Semimetric and Metric Spaces

Definition 52 The application d(·, ·) : E × E → R+ is a semidistance —or semimetric— if

(1m) d(e, e) = 0, ∀e ∈ E.

(2m) d(e1, e2) = d(e2, e1), ei ∈ E, i = 1, 2.

(3m) d(e1, e2) ≤ d(e1, e3) + d(e3, e2), ei ∈ E, i = 1, 2, 3.

Definition 53 A distance —or metric— d(·, ·) is a semidistance —or semimetric— that verifies

(4m) d(e1, e2) = 0 ⇒ e1 = e2, ei ∈ E, i = 1, 2.

Remark 41 When condition (4m) does not hold, some pairs of elements are not distinguishable

(by taking the distance between them); nevertheless, the elements of E can be grouped into

distinguishable classes of equivalence. The same will happen for the norms and the inner products

defined below.

Definition 54 A set E equipped with a semimetric d(·, ·) forms a semimetric space, and equipped

with a metric d(·, ·) forms a metric space. In both cases, the space is denoted by (E, d(·, ·)).

The concept of distance allows us to quantify how close two elements are, and, as a consequence,

the definition of a sequence of elements approximating to an element. Moreover, this concept will

also provide some good topological properties (see section A.3).

Definition 55 A sequence {en, n ≥ 1} of elements of a metric space is said to converge to an

element e if for all ε > 0 there exists n0 ∈ N such that if n > n0 then d(en, e) < ε.

Definition 56 A sequence {en, n ≥ 1} of elements of a metric space is a Cauchy sequence if for

all ε > 0 there exists n0 ∈ N such that if n > n0 and m > n0 then d(en, em) < ε.

It is easy to prove that convergent sequences are Cauchy sequences; the contrary is generally not

true.

Definition 57 A metric space is complete if any convergent sequence is a Cauchy sequences.

In this case, the limit belongs to the space; that is, the space is closed with the topology (this

concept is defined below) induced by the distance.
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A.2.2 Seminormed and Normed Spaces

Let (E,+, ·K) be a linear space.

Definition 58 The application ‖ · ‖ : E → R+ is a seminorm if

(1n) ‖ce‖ = |c|‖e‖, ∀c ∈ R, ∀e ∈ E.

(2n) ‖e1 + e2‖ ≤ ‖e1‖+ ‖e2‖, ei ∈ E, i = 1, 2.

Definition 59 A norm is a seminorm that verifies

(3n) ‖e‖ = 0 ⇒ e = 0E ,

where 0E denotes the null element of E.

Remark 42 A semidistance —or a distance— can be defined from a seminorm —or norm— by

taking

d(e1, e2) = ‖e1 − e2‖. (A.6)

In this case d(e, 0E) = ‖e− 0E‖ = ‖e‖.

Definition 60 A set E equipped with a seminorm ‖ · ‖ forms a seminormed space, and equipped

with a norm ‖ · ‖ forms a normed space. In both cases, the space is denoted by (E, ‖ · ‖).

Definition 61 A Banach space is a normed linear space that is complete.

Linear Combinations and Approximations

As in any linear space, combinations of the form (A.4) can be considered as a mathematical

operation. Nonetheless, only under “good conditions” the coefficients cj exist, are unique and can

be obtained (for example, by considering an optimization problem or projections) for any element

e.

Theorem 6 A finite-dimensional subspace of a normed vector space contains at least one point

of minimum distance from a given point.

Proof. See section 6.6 of Cohen (2003). �

Also from Cohen’s book:

Definition 62 A normed space E is said to be strictly convex if the equation

‖e1 + e2‖ = ‖e1‖+ ‖e2‖, (A.7)

for nonnull elements ei ∈ E, i = 1, 2, holds only when e1 = ce2 for some (real) positive number c.
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As Cohen states: However equality can hold in the triangle inequality in some normed spaces

in cases other that this, as we show below for C[a, b], so such spaces are not strictly convex.

Now we can put a few things together.

Theorem 7 If E is a strictly convex normed space, then a finite-dimensional subspace of E

contains a unique best approximation of any point in E.

Proof. See section 6.6 of Cohen (2003). �

A.2.3 Pre-Hilbert and Hilbert Spaces

Let (E,+, ·K) be a linear space.

Definition 63 The application 〈·, ·〉 : E × E → R is an semiinner product if

(1h) 〈e, e〉 ≥ 0, ∀e ∈ E, and 〈0E, 0E〉 = 0.

(2h) 〈e1, e2〉 = 〈e2, e1〉, ∀ei ∈ E, i = 1, 2.

(3h) 〈c1e1 + c2e2, e3〉 = c1〈e1, e3〉+ c2〈e2, e3〉, ei ∈ E, i = 1, 2, 3, ∀ci ∈ R, i = 1, 2.

Definition 64 An inner product is a semiinner product that verifies

(4h) 〈e, e〉 = 0 if and only if e = 0E.

Definition 65 Two nonnull elements of E are orthogonal if 〈e1, e2〉 = 0.

Proposition 6 If {ej}n1 are nonnull and orthogonal elements of E, they are linearly independent.

Proof. See section 3.4.1 of Kolmogórov and Fomı́n (1975). �

Definition 66 A set E equipped with an inner product 〈·, ·〉 forms a pre-Hilbert space, denoted

by (E, 〈·, ·〉).

Remark 43 Given an inner product, a norm —and then, a distance— can be defined from it by

considering

‖e‖ = (〈e, e〉)1/2 =
√
〈e, e〉. (A.8)

Proposition 7 A given norm can be defined from an inner product if and only if it verifies the

parallelogram identity,

‖e1 + e2‖2 + ‖e1 − e2‖2 = 2
(
‖e1‖2 + ‖e2‖2

)
. (A.9)

Proof. See section 3.4.8 of Kolmogórov and Fomı́n (1975). �
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Remark 44 For the norms verifying the previous condition an inner product can be recovered

or defined through

〈e1, e2〉 =
1

4

(
‖e1 + e2‖2 − ‖e1 − e2‖2

)
. (A.10)

Definition 67 A Hilbert space is a pre-Hilbert space that is complete.

Hilbert spaces are of great importance, not only for their completeness but also for the richness

provided by the inner product of the pre-Hilbert structure.

Definition 68 A basis of a linear space is orthogonal if any pair of its elements are orthogonal.

Proposition 9 is devoted to the existence of orthogonal bases.

Linear Combinations

When the elements of the basis are orthogonal, and under “good conditions” (see theorem 9

below), the coefficients cj of expression (A.4) exist (for any e) and are easy to find:

〈e, ψj〉 = 〈
∑
i

ciψi, ψj〉 =
∑
i

ci〈ψi, ψj〉 = cj〈ψj, ψj〉 (A.11)

so, when 〈ψj, ψj〉 6= 0,

cj =
〈e, ψj〉
〈ψj, ψj〉

. (A.12)

The scalar cj is the coefficient of the projection of e into the linear subspace of E determined by

ψj, say Vψj , in the sense that ProjVψj (e) = cjψj.

Approximations via Truncation

The Fourier Analysis and the extension to more general pre- and Hilbert spaces provide easy

theory on truncations (in this case, projections into the first elements of a properly ordered basis)

like

ProjVψ(e) =

p∑
i=1

ciψi = ctψ, (A.13)

where c = (c1, c2, . . . , cp)
t and ψ = (ψ1, ψ2, . . . , ψp)

t. This corresponds to projecting the element e

into the linear subspace generated by ψ, say Vψ.

Least Squares Approximation

From Cohen’s (2003) book: In [a previous section] we considered the problem of best approximation

in a normed space. In [a theorem], we stated that a unique solution exists to this problem when

the space is strictly convex. [...] It is therefore very pleasing that we can show that any inner

product space is strictly convex. This is the content of our first theorem below. We then deduce

a simple formula that gives the best approximation and apply this in a further discussion of least

squares polynomial approximations. The term least squares approximation is used generally for

approximation problems in inner product spaces, for a reason that will become apparent.
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Theorem 8 Inner product spaces are strictly convex.

Proof. See section 8.3 of Cohen (2003). �

This implies that theorem 7 can be invoked.

Definition 69 A basis {ψj} of elements of E is orthonormal if it is orthogonal and each element

verifies that 1 = ‖ψj‖ =
√
〈ψj, ψj〉.

Moreover,

Theorem 9 A finite-dimensional subspace V of an inner product space E contains a unique best

approximation of any point e ∈ E. If {ψi}n1 is a basis for V and is orthonormal, then the best

approximation of e is
n∑
1

〈e, ψj〉ψj. (A.14)

Proof. See section 8.3 of Cohen (2003). �

Remark 45 Expression (A.14) is the same as expression (A.12), where now the orthogonality of

the basis implies that 〈ψj, ψj〉 = 1.

In the proof of the previous theorem it is obtained that

‖e−
n∑
1

〈e, ψj〉ψj‖2 =
n∑
1

|cj − 〈e, ψj〉|2 + ‖x‖2 −
n∑
1

|〈e, ψj〉|2, (A.15)

which is least when cj = 〈e, ψj〉 for each j. See Cohen’s book for the geometrical interpretation

of this theorem.

Finally, the following theorem provides a way to determine the best least squares approxima-

tion.

Theorem 10 Let {ψi}n1 be a basis for a subspace V of an inner product space E. Let e ∈ E be

given; if
∑n

1 cjψj is the best least squares approximation in V of e, then

n∑
j=1

cj〈ψj, ψi〉 = 〈e, ψi〉, i = 1, . . . , n. (A.16)

Proof. See section 8.3 of Cohen (2003). �

Previous equations, called the normal equations, are a system of n linear equations in n unknowns,

from which the coefficients cj, j = 1, . . . , n, may be obtained.
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Decomposition

Definition 70 Given a linear subspace V of E, its orthogonal complement is defined as

V ⊥ = {e ∈ E | 〈e, v〉 = 0 ∀v ∈ V }. (A.17)

Proposition 8 Given a Hilbert space E, it holds that for any closed linear subspace V ⊂ E,

E = V ⊕ V ⊥.

Proof. See section 21 of Jost (1998). �

These results and proposition 5 imply that any e ∈ E can be uniquely decomposed, for any

linear subspace V of E, as a sum of its two projections into V and V ⊥:

e = ProjV (e) + ProjV⊥(e). (A.18)

Remark 46 Kolmogórov and Fomı́n (1975) include theory on possible infinite-dimensional linear

spaces, a situation which is quite more complicated and usually not included in basic text on

Linear Algebra. In their book the reader can notice, for example, the importance of the existence

of a countable and everywhere dense set, in order to apply an orthogonalization method for

constructing an orthogonal countable everywhere dense set (see section 3.8.3 of this reference).

Proposition 9 In any separable (with a countable and everywhere dense subset, as defined also

in section A.3) pre- or Hilbert space there is at least one orthogonal basis.

Proof. See section 3.4.3 of Kolmogórov and Fomı́n (1975). �

A.3 Topological Structures

The area of Mathematics known as Topology generalises some ideas of the Analysis. Specific-

ally, the theory of functions between topological and measure spaces provides foundation for the

definition of random variables.

A.3.1 Topological Space

Definition 71 A collection T = {τ} of subsets of E is a topology if:

(1t) For the empty set and the whole space: ∅ ∈ T and E ∈ T .

(2t) For the union of any collection of subsets: ∪iτi ∈ T , ∀τi ∈ T .

(3t) For finite intersections of subsets: ∩ni τi ∈ T , ∀τi ∈ T , i = 1, 2, . . . , n.
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Any element of T is termed an open set, while any subset of E not belonging to the topology is a

closed set.

Definition 72 A set E equipped with a topology T forms a topological space, and is denoted by

(E, T ).

Definition 73 A collection of open sets {Bi} ⊂ T is a basis of T if for any open τ ∈ T and any

point e ∈ τ , a set Bi exists such that e ∈ Bi.

Definition 74 Given e ∈ E, a neighbourhood of the point e is any subset N(e) ⊂ E satisfying

the conditions: (i) e ∈ N(e); (ii) there exists τ ∈ T such that e ∈ τ ⊂ N(e).

For a topological structure, the convergence of a sequence can be defined as follows.

Definition 75 A sequence of elements of a topological space, {en, n ≥ 1}, is said to converge

to an element e if for all neighbourhood N(e) of e, there exists n0 ∈ N such that if n > n0 then

en ∈ N(e).

Nevertheless, the topology is usually a much too general structure and, in order to achieve

properties similar to those of the metric spaces, some additional conditions are required, such as

separability and numerability axioms. Briefly, the former conditions are related to the distinguish-

ableness or identificability of two different points of the space, while the latter axioms concern

the possibility of approximating any element of the space with sequences of other elements of the

space (the separability guarantees the uniqueness of the limit).

Separability

Definition 76 A topological space (E, T ) is said to satisfy the first separability axiom if for any

two points of E, e1 and e2, two neighbourhoods exist, N(e1) and N(e2), such that e2 /∈ N(e1) and

e1 /∈ N(e2).

Definition 77 A topological space (E, T ) is said to satisfy the second separability —or Hausdorff—

axiom if for any two points of E, e1 and e2, two neighbourhoods exist, N(e1) and N(e2), such that

N(e1) ∩N(e2) = ∅.

A space satisfying the second separability axiom also satisfies the first; that is, the second axiom

is a stronger condition than the first one, while the converse is not true in general.

Numerability

Definition 78 The family {B(e)} of the neighbourhoods of a point e ∈ E is called the basis of

the neighbourhood system of e if there is an element from this family in each neighbourhood of

the point e.
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Definition 79 A topological space (E, T ) is said to satisfy the first numerability —or countability—

axiom if the neighbourhood system of any point possesses a countable basis.

Definition 80 A topological space (E, T ) is said to satisfy the second numerability —or countabi-

lity— axiom if a countable basis exists in the topology T .

A space satisfying the second numerability axiom also satisfies the first; that is, the second axiom

is a stronger condition than the first one; the converse is not true in general.

Definition 81 Let e be a point of S ⊂ E. A point e is said to be interior if a neighbourhood

N(e) exists such that N(e) ⊂ S. A point e is isolated if there is a neighbourhood N(e) such that

it does not contain any other point of S. A point e is termed boundary if it is neither interior

nor isolated.

Interior points of S can always be approximated by sequences of elements of S (then, of E). When

the first numerability axiom is satisfied, any boundary point —of any subset of the space— can

be represented as the limit of a sequence of elements of E.

Separability and Numerability

Definition 82 Given a subset S ⊂ E, the closure of S, denoted by S̄, is the intersection of all

the closed sets containing S.

Definition 83 A topological space (E, T ) is separable if it has a countable subset such that S̄ = E.

The importance of the second numerability axiom is that it implies the separability of the topo-

logical space, that is, the existence of a numerable dense subset such that S̄ = E; this means that

any element of E is surrounded by elements of S.

Metric Spaces

The existence of a distance provides particularly good topological properties for the metric spaces.

Some of them are the following:

• Induced Topology. Not any topological space can be placed in a metric space in a natural

manner, but, on the contrary, a topological space can be defined from a metric by taking

the following set of neighbourhoods of e ∈ E,

Dε(e) = {ẽ | d(e, ẽ) < ε}. (A.19)

The subset Dε(e) is an open ball of radius ε and with center at e. The topology formed in

such way is the topology induced by the metric d(·, ·).
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• Any metric space satisfies the first axiom of numerability (it is enough to consider the system

{Dε(e), ε ∈ Q}, with Dε(e) as given by A.19).

• For metric spaces, the separability also implies the second numerability axiom (it is enough

to consider the system {D1/k(en)}, k ∈ N, with Dε(e) as given by A.19 and {en} a countable

and everywhere dense set).

Linear Spaces

With the topology constructed from the distance induced by the norm of a linear space, E, the

pair (E, T‖·‖) becomes a topological linear space.

Our Framework

The spaces in which we work in this document have —as usual in applied mathematics— good

properties, in these cases due to the fact that they —Rp, R∞ and C(I)— are separable metric

spaces.

A.4 Measure-Theory Structures

Let P(E) be the set of all possible subsets of E; the next structure is an algebraic structure related

to theory-set operations among subsets of E.

A.4.1 Measurable Space

Definition 84 A collection F = {f} of subsets of E (that is, F ⊂ P(E)) is called a σ-algebra if:

(1mt) ∅ ∈ F .

(2mt) For the complementary: f c ∈ F , ∀f ∈ F .

(3mt) For sequences of subsets: ∪ifi ∈ F , ∀fi ∈ F , i = 1, 2, . . .

Any element of F is termed a measurable set.

Definition 85 A set E equipped with a σ-algebra F forms a measurable space, denoted by (E,F).

A.4.2 Measure Space and Probability Space

Definition 86 Given a measurable space (E,F), a measure with domain F is a function ν : F →
R verifying

(i) It is nonnegative: ν(f) ≥ 0, ∀f ∈ F .
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(ii) For the empty set: ν(∅) = 0.

(iii) For sequences of disjoint subsets: ν (∪ifi) =
∑

i ν(fi), fi ∈ F , i = 1, 2, . . .

Definition 87 A measurable space (E,F) equipped with a measure ν forms a measure space,

denoted by the triple (E,F , ν).

Definition 88 A measure space (E,F , ν) is finite if ν(E) <∞.

Definition 89 A probability is a measure P such that P (E) = 1.

Remark 47 For a finite measure space, a probability P can be defined from a measure ν by

considering

P (f) =
ν(f)

ν(E)
, ∀f ∈ F . (A.20)

Definition 90 A measurable space (Ω,F) equipped with a probability P forms a probability space,

denoted by the triple (Ω,F , P ).

A.4.3 Measurable Function and Random Variable

Definition 91 A function g : (E1,F1)→ (E2,F2) between measurable spaces is measurable if

g−1(f2) ∈ F1, ∀f2 ∈ F2. (A.21)

Remark 48 A measurable function g(·) from a measure space (E1,F1, ν1) to a measurable space

(E2,F2) induces a measure ν2 in the latter space by considering

ν2(f2) = ν1(g−1(f2)), ∀f2 ∈ F2 (A.22)

Definition 92 For E = R, the smallest σ-algebra containing all the intervals of the form I =

(a, b), with a, b ∈ R, is the Borel σ-algebra, and the corresponding measurable space is denoted by

(R,B).

Definition 93 Given a probability space (Ω,F , P ), a random variable is a measurable function

X from (Ω,F , P ) to (R,B).

This application can be represented as

X : Ω −→ R
ω → X(ω)

.

Remark 49 The measurable space (R,B) becomes a measure space (R,B, PX) with the induced

probability

PX(I) = P (X−1(I)), ∀I ∈ B. (A.23)
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Appendix B

Matrix Algebra

Definition 94 A square p × p matrix M = (mij)i,j is symmetric if it is equal to its transpose

matrix, that is, if M = Mt; or, in terms of its elements, if mij = mji, ∀i, j.

Definition 95 A symmetric p × p matrix M is positive definite if xtMx > 0 for all nonnull

x ∈ Rp; and it is positive semidefinite —or nonnegative definite— if xtMx ≥ 0 for all x ∈ Rp.

Proposition 10

(a) A square symmetric matrix is positive semidefinite (respectively, positive definite) if and only

if all its eigenvalues are nonnegative (respectively, positive).

(b) The inverse of a symmetric positive definite matrix is symmetric and positive definite.

Proof. See appendix A.4 of Bertsekas (1999). �

Proposition 11 The sum M = c1M1 + c2M2, ci > 0, of two positive semidefinite (respectively,

positive definite) matrices M1 and M2 is also a positive semidefinite (respectively, positive definite)

matrix.

Proof. By hypothesis xtMix ≥ 0, i = 1, 2, so

xtMx = xt(c1M1 + c2M2)x = c1x
tM1x + c2x

tM2x ≥ 0.

(For positive definite matrices, ‘≥’ must be substituted with ‘>’.)

�

Proposition 12 A full-rank positive semidefinite matrix, M, is positive definite.

Proof. By hypothesis xtMx ≥ 0, but the system of equations xtMx = 0 has the unique solution

x = 0.

�
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Appendix C

Vector Analysis

C.1 A Philological Note

Priestley (1981) makes the difference between the meanings of multivariate and multidimensional

clear (see section 1.2 and the introduction of chapter 9):

Multivariate: “Of course, in a similar way we may have to consider the simultaneous variation

of two, three, four, ..., or any number of related quantities, and such ’collections’ of records

are called multivariate processes”.

Multidimensional: “Generally, if a quantity depends on several variables it is termed a multi-

dimensional process”.

In the same way, it would seem reasonable and coherent naming as:

f : R→ R Univariate unidimensional function

f : Rp → R Univariate multidimensional function

f : R→ Rp Multivariate unidimensional function

f : Rp → Rp Multivariate multidimensional function

C.2 Univariate Multidimensional Functions

C.2.1 Differentiation

Let f : Rp → R be a differentiable function depending on the variables x = (x1, . . . , xp)
t, then

Definition 96
∂f

∂x
=

(
∂f

∂x1

, . . . ,
∂f

∂xp

)t
. (C.1)

Proposition 13 If f = xtc = c1x1 + . . .+ cpxp, where c = (c1, . . . , cp)
t, then it holds that

∂f

∂x
=
∂(xtc)

∂x
= c (C.2)
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and, since f t = f ,
∂f t

∂x
=
∂(ctx)

∂x
= c. (C.3)

Proof. See section 10 of Lütkepohl (1996).

�

Proposition 14 If f = xtCx, where C is a square matrix, then it holds that

∂f

∂x
=
∂(xtCx)

∂x
= (C + Ct)x (C.4)

and, when C is symmetric,
∂f

∂x
=
∂(xtCx)

∂x
= 2Cx. (C.5)

Proof. See section 10 of Lütkepohl (1996).

�

Let be the differentiable functions g : Rp → R and h : Rp → R. Then

Proposition 15 If f = g · h, then

∂f

∂x
=

(
∂g

∂x
h+ g

∂h

∂x

)t
(C.6)

and, as a particular case,
∂f 2

∂x
=

(
2f
∂f

∂x

)t
. (C.7)

Proof. See section 10 of Lütkepohl (1996).

�

Proposition 16 If f = g/h, then

∂f

∂x
=

(
1

h2
(
∂g

∂x
h− g ∂h

∂x
)

)t
. (C.8)

Proof. See section 10 of Lütkepohl (1996).

�

An equivalent definition, with different notation, is the following:

Definition 97 The gradient of the function f is defined as the (column) vector

∇f =

(
∂f

∂x

)
=

(
∂f

∂x1

, . . . ,
∂f

∂xp

)t
. (C.9)
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When there are several multivariate variables with respect to which the gradient would be con-

sidered, a subindex is added in the notation — for example, ∇βf =
(
∂f
∂β

)
.

Proposition 17 When ∇f 6= 0, it indicates —as a vector— the maximum variation direction of

f .

Proof. See section 2.5 of Marsden and Tromba (1991). �

Remark 50 This notation is preferred in Optimization theory (perhaps for the geometric in-

terpretation of the gradient), while the previous, in terms of partial derivatives, is preferable in

Multivariate Analysis.

Definition 98 The Hessian matrix of the function f is defined as

∇2f =

(
∂2f

∂xi∂xj
(x)

)
i,j

. (C.10)

C.2.2 Operators

The previous definitions can be rewritten in terms of the the following operators:

Definition 99 The (vectorial) gradient operator (that applies on univariate multidimensional

functions) is defined as

∇ =

(
∂

∂x

)
=

(
∂

∂x1

, . . . ,
∂

∂xp

)t
. (C.11)

Definition 100 The (scalar) Laplacian operator (that applies on univariate multidimensional

functions) is defined as

∇2 = ∇ · ∇ =

(
∂

∂x

)t(
∂

∂x

)
=

p∑
i=1

∂

∂xi
, (C.12)

where the dot · represents the canonical scalar product in Rp.

C.2.3 Theoretical Results

Proposition 18 (Mean Value Theorem) If f : Rp → R is continuously differentiable over the

linear segment from x to y, then an intermediate point in the segment exists, ξ, such that

f(y)− f(x) = ∇f(ξ)t(y − x). (C.13)

Proposition 19 (Second Order Expansions) Let f : Rp → R be twice continuously differen-

tiable over an open sphere S centered at a vector x. Then

(a) For all y such that x + y ∈ S,

f(x + y) = f(x) + yt∇f(x) +
1

2
yt
(∫ 1

0

(∫ t

0

∇2f(x + τy)dτ

)
dt

)
y. (C.14)
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(b) For all y such that x + y ∈ S, there exists an α ∈ [0, 1] such that

f(x + y) = f(x) + yt∇f(x) +
1

2
yt∇2f(x + αy)y. (C.15)

(c) For all y such that x + y ∈ S, there holds

f(x + y) = f(x) + yt∇f(x) +
1

2
yt∇2f(x)y + o(‖Y‖2). (C.16)

Proof. See appendix A.5 of Bertsekas (1999). �

C.3 Multivariate Multidimensional Functions

Let f : Rp → Rp be a differentiable function, f = (f1, . . . , fmf )
t.

C.3.1 Differentiation

Definition 101 The gradient matrix of a multivariate multidimensional function f is defined as

the matrix whose columns are ∇fj, that is,

∇f =
(
∇f1 · · · ∇fmf

)
j

=

((
∂f1

∂x

)
· · ·
(
∂fmf
∂x

))
j

. (C.17)

Remark 51 Instead of this definition, some matricial differentiation can be defined as the vec-

torial differentiation of section C.2.

Definition 102 The Jacobian of a function is defined as the transpose of the gradient.

C.3.2 Operators

Definition 103 The (scalar) divergence operator (that applies on multivariate multidimensional

functions) could be defined as

∇· =
(
∂

∂x

)
· =

(
∂

∂x1

, . . . ,
∂

∂xp

)t
·, (C.18)

where · represents the canonical scalar product in Rp.

Definition 104 The (vectorial) rotational operator (that applies on multivariate multidimen-

sional functions) could be defined as

∇× =

(
∂

∂x

)
× =

(
∂

∂x1

, . . . ,
∂

∂xp

)t
×, (C.19)

where × represents the canonical vectorial product in Rp.

With these operators, the following could be defined:
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Definition 105 The (vectorial) divergence of f is defined as

div(f) = ∇t · f . (C.20)

Definition 106 The (vectorial) rotational of f is defined as

rot(f) = ∇× f . (C.21)

Remark 52 Definitions, applications and the interpretation can be found in sections 3.3, 3.4 and

8.4 of Marsden and Tromba (1991).

110



Appendix D

Linear Discriminant Analysis for two

groups (K = 2)

In this appendix, the Linear Discriminant Analysis is presented in the original Fisher’s (1936)

form, in the sense of not assuming either normality or equality of the group covariances; that is,

nonparametrically and with possible heteroscedasticity. These two assumptions were introduced

later also under the denomination Linear Discriminant Analysis. This classification method is

defined as an optimization problem from matrices that expresses the sample variability informa-

tion. The analytical solution, the geometrical interpretation and the assignment of new elements

to a population are explained. The two-group classification case is specially considered, so only

one discriminant function will be considered.

D.1 Motivation

D.1.1 The Problem

Let X = (X1, . . . , Xp)
t be a random vector with mean µX = (E(X1), . . . ,E(Xp))

t and covariance

matrix ΣX = (σij)i,j = (cov(Xi, Xj))i,j = E ((X− µX)(X− µX)t). When there are P (k), k =

1, . . . , K, populations where the vector is X(k) = (X (k)

1 , . . . , X (k)
p )t, with parameters µ(k)

X and Σ(k)

X ,

respectively, capturing the differences between the groups from the distribution of X is a subject

of great interest.

On the other hand, it is frequently convenient or necessary to summarize the information

of a vector in a shorter one; that is, to consider Y = (Y1, . . . , Yq)
t, with q < p, instead of

X = (X1, . . . , Xp)
t.

The previous two tasks can be done simultaneously via the following multiple transformation,

where the coefficients can be interpreted as weights (in the sense explained in section D.3.1):

Y (k)

j = aj1X
(k)

1 + . . .+ ajpX
(k)

p = atjX
(k), j = 1, . . . , q (D.1)
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or, in matrix notation,

Y(k) = AtX(k), (D.2)

where A = (aij) is the p × q matrix of the coefficients. Notice that A is independent of k, that

is, independent of the population. The superscript (k) has been maintained in the notation to

highlight that the new vector Y also has a different distribution in each population, and that the

election of A must preserve or increase this difference so that Y is suitable for discrimination.

The covariance matrix of Y(k) is Σ(k)

Y = AtΣ(k)

X A.

Remark 53 Functions given by (??) are linear by definition, which will imply that this document

is devoted to the linear —not quadratic— discriminant analysis.

D.1.2 Data

When the model-versus-datum approach is applied, usually the unknown theoretical information

must be inferred from samples. Let us consider, for each population k, the sample

(x(k)

1 , · · · ,x(k)

nk
) =


x(k)

11 · · · x(k)

1nk
...

. . .
...

x(k)

p1 · · · x(k)
pnk

 , k = 1, . . . , K (D.3)

where x(k)

j , the j-th column of the matrix, containts the j-th element of the sample, with n =∑K
k=1 nk and p ≤ min{nk}. There are techniques in the literature on discriminant analysis to test

the significance of each discriminant variable. In the following subsections some known theory of

this multivariate framework is given in order to motivate Fisher’s method criterion.

D.1.3 Parameter Estimation

The parameters of the distributions can be estimated —for each population— as explained in

section 1.2.3. In addition, when homoscedasticity hypothesis holds, Σ(k)

X = ΣX, k = 1, . . . , K,

the sample information can be combined and the matrix ΣX is estimated with bias by Σ̂x =∑K
k=1

nk
n

Σ̂(k)
x and without bias by Sx = n

n−K Σ̂x.

D.1.4 Variability Information

Information about the within- and between-group variabilities are provided, respectively, by the

within-class scatter matrix

W =
K∑
k=1

nk∑
e=1

(x(k)

e − x(k))(x(k)

e − x(k))t (D.4)

and the between-class scatter matrix

B =
K∑
k=1

nk(x
(k) − x)(x(k) − x)t, (D.5)
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where x = n−1
∑K

k=1 nkx
(k) is the global mean. The total scatter matrix,

T =
K∑
k=1

nk∑
e=1

(x(k)

e − x)(x(k)

e − x)t, (D.6)

expresses the total variability and is the sum of the previous quantities, W + B = T.

These three matrices are, by definition, symmetric and positive semidefinite. In addition, W

is usually nonsingular (full rank) if n > p, and, as a consequence, positive definite (see proposition

12).

Remark 54 The discriminant analysis is a supervised classification technique where the mem-

bership information is exploited through these variability matrices.

Remark 55 An important observation is that from definition (D.4) it holds that

W =
K∑
k=1

nkΣ̂
(k)

x = nΣ̂x = (n−K)Sx. (D.7)

This implies that any of the matrices W, Σ̂x and Sx could be used in the statements of this

document. A positive constant factor does not change the optimization problems that will be

considered. Nevertheless, we shall use W since it maintains its meaning as variability matrix,

while the matrices Σ̂x and Sx make sense as estimators only under the fulfilment of the equal group

variability assumption (homoscedasticity). Although we shall find the solution of an optimization

problem and we shall not include an analysis of the quality of y = atx, the discriminant power

of this linear function is strongly related to the fulfilment of the homoscedasticity condition —

given T, the bigger W is, the smaller B and the between-group variability are. This is why most

authors use Sx in their statements.

Remark 56 Another expression of W can be obtained by using some inference concepts already

defined and the relation of remark 55

W = (wij)i,j =

(
K∑
k=1

nk∑
e=1

(x(k)

ie − x
(k)

i )(x(k)

je − x
(k)

j )

)
i,j

. (D.8)

Compound Variables

Given a compound variable y = Atx, it is important to establish the relation between the scatter

matrices of y —say Wy, By and Ty— and those of x —say W, B and T.

Proposition 20 If y = Atx, then

1. Wy = AtWA.

2. By = AtBA.
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3. Ty = AtTA.

Proof. Let y(k)
e be the e-th element of the k-th sample; then

Wy =
K∑
k=1

nk∑
e=1

(y(k)

e − y(k))(y(k)

e − y(k))t

=
K∑
k=1

nk∑
e=1

(Atx(k)

e −Atx(k))(Atx(k)

e −Atx(k))t

=
K∑
k=1

nk∑
e=1

At(x(k)

e − x(k))(x(k)

e − x(k))tA

= At

(
K∑
k=1

nk∑
e=1

(x(k)

e − x(k))(x(k)

e − x(k))t

)
A = AtWA, (D.9)

By =
K∑
k=1

nk(y
(k) − y)(y(k) − y)t

=
K∑
k=1

nk(A
tx(k) −Atx)(Atx(k) −Atx)t

=
K∑
k=1

nkA
t(x(k) − x)(x(k) − x)tA

= At

(
K∑
k=1

nk(x
(k) − x)(x(k) − x)t

)
A = AtBA, (D.10)

and

Ty = Wy + By = AtWA + AtBA = At(W + B)A = AtTA. (D.11)

�

Positiveness

The previous calculations include a proof of the following statement:

Proposition 21 Given a multivariate variable x, its scatter matrices W, B and T are positive

semidefinite.

Proof. It can be written

y(k)

e = (y(k)

e,1, . . . , y
(k)

e,q) (D.12)

y(k) =
1

nk

nk∑
e=1

y(k)

e =

(
1

nk

nk∑
e=1

y(k)

e,1, . . . ,
1

nk

nk∑
e=1

y(k)

e,q

)
(D.13)
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y =
1

n

K∑
k=1

nky
(k) =

(
1

n

K∑
k=1

nk∑
e=1

y(k)

e,1, . . . ,
1

n

K∑
k=1

nk∑
e=1

y(k)

e,q

)
. (D.14)

The positiveness is obtained by looking to both (D.9) and (D.10) from the bottom up and con-

sidering the univariate case y = atx:

atWa =
K∑
k=1

nk∑
e=1

(y(k)

e − y(k))(y(k)

e − y(k))t

=
K∑
k=1

nk∑
e=1

(
y(k)

e −
1

nk

nk∑
e=1

y(k)

e

)2

≥ 0 (D.15)

and

atBa =
K∑
k=1

nk(y
(k) − y)(y(k) − y)t

=
K∑
k=1

nk

(
1

nk

nk∑
e=1

y(k)

e −
1

n

K∑
k=1

nk∑
e=1

y(k)

e

)2

≥ 0. (D.16)

Finally, the matrix T is positive semidefinite as a consequence of being the sum of positive semidef-

inite matrices (see proposition 11).

�

Splitting Criterion

Given a unique sample with elements of both populations, minimizing a functional of W or

maximizing a functional of B would be a reasonable criterion for splitting the sample from the

information provided by the vector x. Many techniques are based on this idea. On the one hand,

the smaller W is, the more similar between them the elements of the subgroups are; on the other

hand, the bigger B is, the more differences there are within the subgroups.

Although the subgroups are made in the supervised classification framework, it is still reason-

able to choose the coefficients A so as the functions Y minimize Wy or maximize By. Notice

that given T, the bigger W is, the smaller B and the between-group variability are — a trade-off

between these two criteria is necessary.

D.1.5 Case q = 1: One Function

Some methods in literature choose —with different criteria— the linear combinations y(k)

j one at a

time. Moreover, in a K-group classification problem, q must be no bigger that K−1; since we have

worked in the two-group classification case, only one discriminant function could be considered in

this thesis:

y(k) = a1x
(k)

1 + . . .+ apx
(k)

p = atx(k), k = 1, 2, . . . , K, (D.17)
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with a = (a1, . . . , ap)
t. For this new compound variable, y(k) = atx(k) and (s(k)y )2 = atS(k)

x a, where

S(k)
x is the within-group sample covariance matrix. For classifying purposes, the variable y(k) must

discriminate as much as possible. Following the idea of the aforementioned splitting criterion, the

interest is in finding a so as to minimize the within-group dispersion, Wy = atWa, or to maximize

the between-group dispersion, By = atBa. Then, the choice of a can be formulated as an optimal

weighting problem.

D.2 The Optimization Problem

A general fraction increases either when the numerator increases or the denominator decreases;

that is, two criteria are combined and taken into account at the same time. Fisher’s proposal is

based on a trade-off criterion between maximizing By and minimizing Wy, as it maximizes the —

sometimes termed— (generalised) Rayleigh quotient : λ = By/Wy (this greek letter has no relation

with the λ used in chapter 2). This nonnegative quantity makes sense —mathematically— only

when Wy > 0, that is, when W is positive definite, or, equivalently in this case, is a nonsingular

matrix: then, this hypothesis is necessary throughout this appendix and chapter 3. To add

each consecutive compound function, this method also maximizes this quantity but with the

imposition of uncorrelation with the previous combination.

Of special interest is the case of one discriminant function y and several discriminant variables

x1, . . . , xp, consisting in finding a ∈ Rp such that:

a = argmax {λ(a)} = argmax

{
By

Wy

}
= argmax

{
atBa

atWa

}
. (D.18)

This is an unconstrained (D = Rp) nonlinear (quadratic) optimization problem. Both atBa and

atWa are polinomial (quadratic) differentiable functions in a.

The analytical resolution of the problem is obtained by solving

0 =
∂λ

∂a
=

2[Ba(atWa)− (atBa)Wa]

(atWa)2
=

2[Ba− λWa)]

atWa
, (D.19)

so the expression

0 = Ba− λWa = (B− λW)a (D.20)

is the eigenequation of the problem. For a nonnull solution to exist, it is necessary for |B−λW| =
0. As W is invertible (nonsingular) by hypothesis,

0 = W−1(B− λW)a = (W−1B− λI)a. (D.21)

The interest is in the eigenvectors of the largest eigenvalue of the matrix W−1B. In general,

W−1B has min{p,K − 1} nonzero eigenvalues (section 11.5 of Mardia et al. [1979]).
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Set of Solutions

As λ(ca) = λ(a), ∀c ∈ R, c 6= 0, that is, λ(a) is homogeneous, the existing solution will not be a

unique vector but an infinite family of them, denoted by

V ∗a = {ca | c ∈ R, c 6= 0}. (D.22)

If a is a nonnull eigenvector of λ, so is any element of V ∗a ; that is, the set of eigenvectors is

the solution to (D.21): mathematically it is necessary to include the null vector as solution of the

equation, but this vector makes no sense in the optimization problem. Let us denote the solution

of this optimization problem by the pair (V ∗aF , λF ).

Geometrically, the set Va = V ∗a ∪ {a = 0} is a one-dimensional linear subspace of Rp.

Another Interpretation

Another interesting interpretation arises when the generalised Rayleigh quotient is written as

λ(a) =
By

Wy

=
atBa

atWa
=

at(B + W −W)a

atWa
=

atTa

atWa
− 1. (D.23)

This decomposition shows that the previous maximization problem can be interpreted as maxi-

mizing the total variability while minimizing the within-class variability.

D.2.1 Equivalent Problems

Usually the previous optimization problem is solved via equivalent constrained problems.

Inequality Constrained Problem

For fixed a, since ‖ca‖ = |c|‖a‖ the scalar c can always be chosen so that the set of solutions

V ∗a has a “representative” as close to the origin 0 as desired. This means that the search can

be restricted to any domain D having the origin as an interior point; concretely, the compact

(p-1)-dimensional sphere {atWa ≤ 1} can be considered.

On the other hand, as W is positive semidefinite, by proposition 22(d) (in appendix E), the

function h(a) = atWa is convex; thus, from proposition 23(c) (in appendix E) the set {a ∈
Rp | h(a) = atWa ≤ 1} is convex; finally, these facts and proposition 24 provide the equivalence

—under existence— of the following optimization problem:

a = argmax
{
atBa

}
subject to atWa ≤ 1, (D.24)

where the feasible domain is D = {a ∈ Rp | atWa ≤ 1}.
For fixed λ, the solutions a can be interpreted geometrically in Rp as the intersection of a

one-dimensional linear subspace and the volume (sphere) whose frontier is atWa = 1, that is,

Va ∩ {atWa ≤ 1} (strictly, the point a = 0 must be excluded).
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Equality Constrained Problem

The original optimization problem and the previous one, due to (D.22), do not guarantee the

uniqueness of the solution. To avoid the arbitrary scale factor and obtain a unique solution,

usually the constraint is added in the form:

a = argmax
{
atBa

}
subject to atWa = 1, (D.25)

whose solution is (aF , λF ), with atFWaF = 1 and λF = atFBaF . Thus, the feasible region is

D = {a ∈ Rp | atWa = 1}. The calculations leading to the explicit expression of aF are given in

section D.3. On the one hand, the constraint is only fixing the value of the constant c (defined in

[D.22]); on the other hand, V ∗a is generated by any of its elements — this justifies the fact that

the two optimization problems are equivalent.

More formally, the previous inequality constrained problem is equivalent to this equality con-

strained problem due to proposition 25 with {a ∈ Rp | atWa ≤ 1} as closed convex bounded from

below set. This is the way in which the optimization problem has been considered in this text.

As in the previous case, for fixed λ the solutions a can be interpreted geometrically in Rp as

the intersection of a one-dimensional linear subspace and the p-dimensional surface determined

by atWa = 1, that is Va ∩ {atWa = 1} (strictly, the point a must be excluded).

Convexity

In these problems, the objective function is convex due to proposition 22(d) (in appendix E) and

the positive definiteness of the matrix B.

D.2.2 Existence of Solutions

Weierstrass Theorem

The search for a solution can be tackled via the previous equivalent optimization problems. In

the first one, the feasible region is compact and, as λ(a) is continuous, the Weierstrass theorem

implies the existence of a solution.

D.2.3 Fractional Programming

The optimization problem (D.18) can be seen as a particular case of fractional optimization, that

is, the optimization of a quotient of functions. To see how these problems can be turned into

nonfractional equality constrained problems, see proposition 36 (in appendix E).

D.2.4 Case K = 2: Two Populations

We have taken into special consideration classification into two populations. It is well-known that

this case can be written as an equivalent linear regression problem; nevertheless, we have not used
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this interpretation here.

On the other hand, since

(x(1) − x) =
n2

n
(x(1) − x(2)) (D.26)

and

(x(2) − x) =
n1

n
(x(2) − x(1)) = −n1

n
(x(1) − x(2)), (D.27)

it follows that

atBa = at

[
K∑
k=1

nk(x
(k) − x)(x(k) − x)t

]
a

= at
n1n2

n
(x(1) − x(2))(x(1) − x(2))ta

=
n1n2

n
[at(x(1) − x(2))][at(x(1) − x(2))]t

=
n1n2

n
[at(x(1) − x(2))]2. (D.28)

Thus, the previous optimization problems are equivalent, respectively, to the following ones:

a = argmax

{
[at(x(1) − x(2))]2

atWa

}
(D.29)

and

a = argmax
{

[at(x(1) − x(2))]2
}

subject to atWa = 1. (D.30)

Remark 57 Notice that with this formulation (for two populations) the numerator highlights

the objective of the optimization problem — maximizing the difference between the means under

control of the variability.

Remark 58 The quantity [at(x(1) − x(2))]2 can be written as at(x(1) − x(2))(x(1) − x(2))ta .

D.3 The Discriminant Function

For two populations, the resolution of the optimization problem, with and without the classical

constraint (when atWa = 1 or β = 0, respectively), is given at the same time by

0 =
∂

∂a

(
[at(x(1) − x(2))]2

atWa
− β(atWa− 1)

)

=
∂

∂a

(
[at(x(1) − x(2))]2

atWa

)
− ∂

∂a

(
β(atWa− 1)

)
=

2at(x(1) − x(2))(x(1) − x(2))atWa− [at(x(1) − x(2))]22Wa

(atWa)2

−β2Wa (D.31)
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so
at(x(1) − x(2))atWa

[at(x(1) − x(2))]2 + β(atWa)2
(x(1) − x(2)) = Wa (D.32)

and, if W is invertible,

a =
at(x(1) − x(2))atWa

[at(x(1) − x(2))]2 + β(atWa)2
W−1(x(1) − x(2)). (D.33)

Since at(x(1) − x(2)) and atWa are numbers, irrelevant of whether the constraint atWa = 1 is

imposed or not, the solution for the classical linear discriminant analysis is that y is proportional

to (x(1) − x(2))tW−1, and, without loss of generality:

y = atFx = (x(1) − x(2))tW−1x. (D.34)

See section 1.2.5 for a discussion of the negligible role of a possible scalar factor in this expression.

Since y ∈ R, it is sometimes written as y = yt = xtaF = xtW−1(x(1) − x(2)) in literature.

D.3.1 Interpretation of the Coefficients

Usually the variables of the vector x have been measured using different scales: localization,

variability or even units of measure. In this case, the mathematical solution of the optimization

problem provides values ai not taking into account this fact. The function

y = a1x1 + . . .+ apxp = atx, (D.35)

with a = (a1, . . . , ap)
t, can still be used for classifying.

A possible transformation that can be applied to the previous values is a translation so that

the origin of the axes coincides with the global centroid of the samples and a homothecy so that

the coordinates refer to the standard deviation of each axis. Then,

ỹ = b0 + b1x1 + . . .+ bpxp = b0 + btx, (D.36)

with b = (b1, . . . , bp)
t, where bi can be interpreted as regression coefficients. When these values

are obtained from crude data, they are termed nonstandardized coefficients, that represent the

(absolute) contribution of the variables to the function but are not comparable amongst them.

Regardless, ỹ is also used for classifying. On the other hand, the typification of variables solves,

at the same time, the aforementioned scale problems —localization, variability and units. So if

b is obtained from typified —not crude— variables, this vector contains the standardized coeffi-

cients, that represent the relative contribution of the variables to the function and are comparable

amongst them. Nevertheless, now the function (D.36) cannot be used for classifying, as the

important information has been lost (in this case b0 = 0, for example).

120



Our proposal has been described in terms of the function (D.35) suggested by the optimization

problem; nevertheless, the interpretation of the coefficients —through the figures— has been based

on the function

y = atx = atDD−1x = atDx̃, (D.37)

where x̃ = D−1x, with D being the diagonal matrix with elements σ1, . . . , σp, where σi is the

standard deviation of the variable xi. After applying this univariate standardization, the new

dimensionless variables have variance equal to one:

x̃ = D−1x = (σ−1
1 x1, . . . , σ

−1
p xp) ⇒ V ar(x̃i) = V ar(σ−1

i xi) = 1. (D.38)

Note that the previous transformation does not change the mean of each variable. Thus, for the

interpretation we have considered the coefficients defined by atD, that is, the quantities

atD = (a1σ1, . . . , apσp). (D.39)

The vector a = (a1, . . . , ap)
t determines a direction in Rp; for our two algorithms and when

p = 2 or p = 3, the code draws the version of these two directions that contains the global centroid

of the data (in green for the first algorithm and in magenta for the second [see figure 3.5(d)]).

Finally, there are in literature different methods to measure the contribution of each discrimi-

nant variable in the discriminant functions. The coefficients are related to the descriptive character

of the linear discriminant analysis, while the discriminant functions are related to the predictive

character.

D.4 The Classification

Geometrically, the Fisher’s discriminant analysis projects the data into one-dimensional linear

subspaces (see addendum 1.2.5). For the first direction, this operation is analytically done by

the y = atFx operation; that is, the multivariate vector x is projected by the (x(1) − x(2))tW−1

premultiplication. The method classifies a new element in the population k as follows:{
k = 1 if y(x) > 1

2
(x(1) − x(2))tW−1(x(1) + x(2))

k = 2 otherwise
(D.40)

with the value 1
2
(x(1) − x(2))tW−1(x(1) + x(2)), the cutoff point, determined by the equation

(x(1) − x(2))tW−1x− 1

2
(x(1) − x(2))tW−1(x(1) + x(2)) = 0, (D.41)

where the equality determines a hyperplane. By writing

1

2
(x(1) − x(2))tW−1(x(1) + x(2)) = (x(1) − x(2))tW−1 1

2
(x(1) + x(2)) (D.42)

we see that the cutoff point is the projection of the midpoint between the two population sample

averages, 1
2
(x(1) + x(2)), into the same subspace.

121



Thus, for y = atFx the classification of a multivariate point is made by the simple comparison of

its projection with the projection of the semisum of the group means (centroids). It is well-known

that the decision boundaries of the linear discriminant analysis are linear; in (D.40) the equality

has been included in the “otherwise” case (in practice this case is usually negligible).

Remark 59 Expressions (D.34) and (D.40) lead to the —also named in literature— (sample)

linear discriminant function

L(x) = (x(1) − x(2))tW−1x− 1

2
(x(1) − x(2))tW−1(x(1) + x(2))

= y(x)− 1

2
(x(1) − x(2))tW−1(x(1) + x(2)) (D.43)

Notice that the second factor does not depend on the variables x. See, for example, section 12.2.2

of Krzanowski (2000).

Remark 60 The use of data and the previous optimization problem provide a value for a. Then,

if there is interest in the stochastic character of the vectors X and Y (see the motivation at the

beginning of this appendix), the following discriminant function

Y = Y (X) = âtX = atFX = (x(1) − x(2))tW−1X (D.44)

and classification rule{
k = 1 if Y > 1

2
(x(1) − x(2))tW−1(x(1) + x(2))

k = 2 otherwise
(D.45)

can be considered instead of (D.34) and (D.40), where X and Y are random variables again.

This appendix can be interpreted in the classification framework of section 1.5. Some population

information is unknown and the use of samples allows us to infer it; the sample rule (D.40) is

obtained; on the other hand, an underlying theoretical rule can be obtained by substituting the

corresponding population quantities into it.

Remark 61 The point r = 1
2
(x(1) +x(2)) can be considered to be a reference global p-dimensional

point of the samples; in the same way, the cutoff point can be seen as a global reference point in

the unidimensional subspace, that is, r = y(r). Then, the classification criterion (D.40) becomes{
k = 1 if y > r

k = 2 otherwise
. (D.46)

Another interpretation of the classification criterion arises when, for each k, the centroid of each

group is interpreted as a representative multivariate point of the group, r(k) = x(k), and, equiva-

lently, the projection of the centroid is thought of as a representative univariate point, r(k) = y(r(k)).
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Since y(x) is a linear application in Rp, on the one hand y(x̂) = ŷ, and, on the other hand, geomet-

rically, the point r is the midpoint of the p-dimensional segment from r(1) to r(2), so r is the midpoint

of the unidimensional segment from r(1) to r(2). Analytically, this can be proved from the fact that,

for any points xj ∈ Rp, j = 1, 2, it holds that |∆y| = |y(x2) − y(x1)| = |atF (x2 − x1)| = |atF∆x|.
Regardless, the important conclusion is that the rules (D.40) and (D.46) can be expressed, respec-

tively, as

k = argmin{1,2} {d(y(x), y(r(k)))} = argmin{1,2} {d(y, r(k))} (D.47)

and finally as

k = argmin{1,2}
{
|atFx− atFx(k)|

}
. (D.48)

Remark 62 For two populations, a rule like (D.46) is possible; this rule makes a simple compar-

ison with the midpoint and does not need to take into account the magnitude of the distance to

the point r. For more than two populations, a rule like (D.47) would be needed; this rule takes

into account the magnitude of the distances to the points r(k).

Remark 63 For one discriminant function (q = 1) a rule like (D.46) is possible; for more dis-

criminant functions a rule like (D.47), with multivariate y, would be needed.

Remark 64 In the literature on discriminant analysis, there are other ways to classify that are

not directly based on the discriminant functions.

D.4.1 Theoretical Misclassification Rates

For two populations (K = 2) and e = x, and when e is chosen —to evaluate the global error

rate— from the populations with the same probability (if n1 = n2; the empirical counterpart is

that the testing samples would have the same size, m1 = m2),

p(E) = p(C(e) = 2 | e ∈ P (1)) · p(e ∈ P (1))

+p(C(e) = 1 | e ∈ P (2)) · p(e ∈ P (2))

=
1

2
p(y(x) < r | x ∈ P (1)) +

1

2
p(y(x) > r | x ∈ P (2)). (D.49)

Sometimes the quantities involved in this expression can be calculated easily and even without

calculations; other times, more or less difficult calculations are necessary.

Under Normality

As a final and general theoretical comment, when the distributions of X(k) are normal, Fisher’s

approach is optimal in the sense of minimizing the misclassification probability.
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Appendix E

Optimization Theory

All the contents of this section can be found in Bertsekas (1999). Let be D ⊂ Rp and the

differentiable function f : D → R depending on the variables x = (x1, . . . , xp)
t, where p ∈ N \ {0}

and Rp is equipped with the usual Euclidean norm ‖ · ‖ = ‖ · ‖p. Notice that since the function f

is supposed to be differentiable, gradients and Taylor series can be used to study the performance

and the conditions in the neighbourhood of the extreme points.

E.1 Some Definitions

E.1.1 Minima

Definition 107 The point x0 ∈ D is said to be a constrained relative —or local— minimum if

f(x0) ≤ f(x), ∀ x ∈ Dε(x0), (E.1)

where Dε(x0) = {x | ‖x0 − x‖ < ε}, for some ε > 0 such that Dε(x0) ⊂ D.

Definition 108 The point x0 ∈ D is said to be a constrained global minimum if

f(x0) ≤ f(x), ∀ x ∈ D. (E.2)

E.1.2 General Problem

A general constrained optimization (minimization) problem with feasible or admissible domain D
consists in searching for the point x such that

x = argmin {f(x)} subject to x ∈ D, (E.3)

where f is the objective —or cost— function. Usually, D is expressed through some conditions on

differentiable multivariate functions h = (h1, . . . , hmh)t and g = (g1, . . . , gmg)
t; for example, the

equality constraints h(x) = 0 and the inequality constraints g(x) ≤ 0, that would provide

D = {x ∈ Rp | h(x) = 0 and g(x) ≤ 0} . (E.4)

The points of D are termed feasible points.
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E.1.3 Existence of Solutions

It is well-known, due to the Weierstrass theorem, that there is at least one global minimum if f

is a continuous function and D is compact (with the usual topology of R — the Borel topology).

On the other hand, there is also an optimal solution when f is continuous, D is closed and

f(xk)→∞ for any {xk}k ⊂ D such that ‖xk‖ → ∞.

Some other results on the existence of optimal solutions are in section 2.1.2 of Bertsekas (1999)

and below in this appendix.

E.1.4 Maximization Problem

Local and global maximum are defined in the same way, just by substituting ≤ by ≥ in (E.1) and

(E.2).

The general minimization problem (E.3) is equivalent to the following maximization one:

x = argmax {−f(x)} subject to x ∈ D. (E.5)

In this case, all the forthcoming theory can be reformulated by replacing the concepts related to

minimum and convexity of f with the corresponding concepts of maximum and concavity of f .

E.1.5 Convexities

Definition 109 The subset D ⊂ Rp is said to be convex if

cx1 + (1− c)x2 ∈ D (E.6)

for all xi ∈ D, i = 1, 2 and all c ∈ [0, 1].

In the following, the domain D is supposed to be convex, although some results also hold for an

open set containing the minimum.

Definition 110 For a convex domain D, a function f : D → R is convex if

f(cx1 + (1− c)x2) ≤ cf(x1) + (1− c)f(x2) (E.7)

for all xi ∈ D, i = 1, 2 and all c ∈ [0, 1], and f is strictly convex if the previous inequality holds

with < instead of ≤, for all xi ∈ D, i = 1, 2 with x1 6= x2 and all c ∈ (0, 1).

Proposition 22 Let D ⊂ Rp be a convex set and let f : D → R be twice continuously differen-

tiable, then

(a) If ∇2f(x) is positive semidefinite for all x ∈ Rp, then f is convex over D.

(b) If ∇2f(x) is positive definite for every x ∈ Rp, then f is strictly convex over D.
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(c) If D = Rp and f is convex, then ∇2f(x) is positive semidefinite for all x ∈ D.

(d) The quadratic function f(x) = xtMx, where M is a symmetric p × p matrix, is convex if

and only if M is positive semidefinite. Furthermore, f is strictly convex if and only if M is

positive definite.

Proof. See appendix B.1 of Bertsekas (1999). �

Proposition 23

(a) For any collection {Di | i ∈ I} of convex sets, the set intersection
⋂
i∈I Di is convex.

(b) The image of a convex set under a linear transformation is convex.

(c) If D is a convex set and f : D → R is a convex function, the level sets {x ∈ D | f(x) ≤ c}
and {x ∈ D | f(x) < c} are convex for all scalars c.

Proof. See appendix B.1 of Bertsekas (1999). �

E.2 Convexities and Optimization

Taking into account the fact that an unconstrained problem is a particular case of a constrained

one, with D = Rp, the following statements concern both situations.

Definition 111 An optimization problem is convex if f and D are convex.

The importance of this definition is that, in a convex problem, the local minimum —when it

exists— is the global minimum.

Proposition 24 If f is a convex function and D is also convex, then a local minimum of f over D
is a global minimum. If in addition f is strictly convex over D, then at most one global minimum

of f over D exists.

Proof. See section 2.1 of Bertsekas (1999). �

Definition 112 The point x0 ∈ D ⊂ Rp is an extreme —or frontier— point if for any neigh-

bourhood N(x0) such that x0 ∈ N(x0) ⊂ D there are both a point belonging to D and a point not

belonging to D.

Proposition 25 Let f be convex, let D be closed convex bounded from below, then if f attains a

maximum over D, it attains a maximum at some extreme point of D.
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Proof. See appendix B.4 of Bertsekas (1999). �

As in the unconstrained optimization, the first order variation ∇f(x0)t∆x, due to a small

feasible variation ∆x, is expected to be nonnegative at a local minimum x0. Due to the convexity

of D, the feasible variations are of the form ∆x = x− x0, with x ∈ D.

Proposition 26 (First Order Necessary Condition)

(a) If x0 is a local minimum of f over D, then

∇f(x0)t(x− x0) ≥ 0, ∀x ∈ D. (E.8)

(b) If f is convex over D, then the condition of part (a) is also sufficient for x0 to minimize f

over D.

Proof. See section 2.1 of Bertsekas (1999). �

Remark 65 In the unconstrained situation, when f is convex the first order condition∇f(x0) = 0

(given in equation [E.18]) is also sufficient for optimality.

Proposition 27 (Second Order Necessary Condition) If x0 is a local minimum of the twice

continuously differentiable function f : Rp → R over the convex set D, then

(x− x0)t∇2f(x0)(x− x0) ≥ 0 (E.9)

for all x ∈ D such that ∇f(x0)t(x− x0) = 0.

Proof. See exercise 2.1.10 of Bertsekas (1999). �

With respect to sufficient conditions, the following result holds:

Proposition 28 (Second Order Sufficient Condition) If x0 is a local minimum of the twice

continuously differentiable function f : Rp → R over the convex set D, then

∇f(x0)t(x− x0) ≥ 0 ∀x ∈ D (E.10)

and one of the following three conditions holds:

1. D is polyhedral and it follows that

(x− x0)t∇2f(x0)(x− x0) > 0 (E.11)

for all x ∈ D satisfying x 6= x0 and ∇f(x0)t(x− x0) = 0.

2. It follows that x̄t∇2f(x0)x̄ > 0 for all nonzero x̄ that are in the closure of the set {d | d =

α(x− x0), x ∈ D, α ≥ 0} and satisfy ∇f(x0)tx̄ = 0.

3. For some γ > 0, we have

(x− x0)t∇2f(x0)(x− x0) > γ‖x− x0‖2, x ∈ D. (E.12)

Proof. See exercise 2.1.11 of Bertsekas (1999). �
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E.2.1 Consequences of the Convexities

It is worthwhile noting how, due to the monotony of a convex function and the topology of a

convex domain, the optimization problem is simplified in two directions:

1. Minimum. A local minimum is also a global minimum: see proposition 24.

2. Maximum. There is an extreme (or frontier) point of the domain where the maximum

—when it exists— is attained: see proposition 25.

E.3 Unconstrained Problem

The unconstrained situation is a particular case of the constrained situation with D = Rp. Never-

theless, this particular case is of great importance, as one of the approaches towards solving

the constrained optimization problem consists in tackling an equivalent unconstrained problem.

Minima are now defined as

Definition 113 The point x0 ∈ Rp is said to be an unconstrained relative —or local— minimum

if

f(x0) ≤ f(x), ∀x ∈ Dε(x0), (E.13)

where Dε(x0) = {x | ‖x0 − x‖ < ε}, for some ε > 0.

Definition 114 The point x0 ∈ Rp is said to be a unconstrained global minimum if

f(x0) ≤ f(x), ∀x ∈ Rp. (E.14)

E.3.1 Necessary Conditions

Small variations ∆x from x0 yield, up to first order, a cost variation

f(x0 + ∆x)− f(x0) ≈ ∇f(x0)t∆x (E.15)

and, up to second order,

f(x0 + ∆x)− f(x0) ≈ ∇f(x0)t∆x +
1

2
∆xt∇2f(x0)∆x. (E.16)

It is expected that if x0 is an unconstrained local minimum, the first order cost variation due

to small variation ∆x is nonnegative

∇f(x0)t∆x =

p∑
i=1

∂f(x0)

∂xi
∆xi ≥ 0, (E.17)

and, in particular, by taking ∆x to be positive and negative multiples of the unit coordinate

vectors, we obtain ∂f(x0)
∂xi
≥ 0 and ∂f(x0)

∂xi
≤ 0, respectively, so the equivalent necessary condition

∇f(x0) = 0 (E.18)
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is obtained.

On the other hand, it is also expected that the second order cost variation due to small ∆x

must be nonnegative

∇f(x0)t∆x +
1

2
∆xt∇2f(x0)∆x ≥ 0,

that becomes (by applying equation [E.18])

∆xt∇2f(x0)∆x ≥ 0, (E.19)

which implies that the matrix

∇2f(x0) (E.20)

is positive semidefinite.

Proposition 29 Let x0 be an unconstrained local minimum of f : Rp → R and assume that f is

continuously differentiable in an open set D containing x0; then

∇f(x0) = 0 (E.21)

and if, in addition, f is twice continuously differentiable within D, the

∇2f(x0) is positive semidefinite. (E.22)

Proof. See section 1.1 of Bertsekas (1999). �

E.3.2 Sufficient Conditions

If x0 is such that

∇f(x0) = 0 (E.23)

and

∇2f(x0) is positive definite (E.24)

then for all ∆x 6= 0 it holds that

∆xt∇2f(x0)∆x > 0, (E.25)

implying that at x0 the second order variation of f due to small nonzero variation ∆x is positive.

Thus, the function f tends to increase strictly with small departures from x0, suggesting that the

conditions (E.23) and (E.24) are sufficient for local optimality.

Proposition 30 Let f : Rp → R be twice continuously differentiable in an open set D; suppose

that x0 ∈ D satisfies the conditions

∇f(x0) = 0 (E.26)

and

∇2f(x0) is positive definite (not only semidefinite); (E.27)
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then x0 is a strict unconstrained local minimum of f . In particular, scalars γ > 0 and ε > 0 exist

such that

f(x) ≥ f(x0) +
γ

2
‖x− x0‖2 ∀x such that ‖x− x0‖ < ε. (E.28)

Proof. See section 1.1 of Bertsekas (1999). �

E.4 Constrained Problem: Equality Constraints

Under some conditions, the constrained optimization problem (E.3) can be solved by way of an

unconstrained optimization problem. Let be

D = {x ∈ Rp | h(x) = 0} . (E.29)

E.4.1 Necessary Conditions

Proposition 31 (Lagrange Multiplier Theorem) Let x0 be the local minimum of f subject

to h(x) = 0, and assume that the vectors ∇hi(x0), i = 1, . . . ,mh are linearly independent. Then

there is a unique (column) vector β0, called a Lagrange multiplier vector, such that

∇f(x0) +

mh∑
i=1

βi∇hi(x0) = 0. (E.30)

If in addition f and h are twice continuously differentiable, we have

xt

(
∇2f(x0) +

mh∑
i=1

βi∇2hi(x0)

)
x ≥ 0 (E.31)

for all x ∈ V (x0) = {x | ∇hi(x0)tx = 0, i = 1, . . . ,mh}.

Proof. See section 3.1 of Bertsekas (1999). �

Both local minima and local maxima —and possible other points— may satisfy the first order

necessary conditions. In this situation, the second order necessary conditions are used to find local

minima.

E.4.2 The Lagrangian

It is useful to combine the objective function and the constraints in the following function.

Definition 115 The Lagrangian of the optimization problem (E.3) with domain (E.29) is given

by

F (x, β) = f(x) + βth(x), x ∈ D. (E.32)

where β = (β1, . . . , βmh)t are the multipliers.

Remark 66 It does not matter whether the second term is added as +βth(x) or −βth(x), since

h(x) = 0 if and only if −h(x) = 0.
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E.4.3 Sufficient Conditions

Proposition 32 (Second Order Conditions) Let f and h be twice continuously differentiable,

and let x0 ∈ Rp and β0 ∈ Rmh such that

∇xF (x0, β0) = 0 and ∇βF (x0, β0) = 0 (E.33)

and

xt∇2
xxF (x0, β0)x ≥ 0 for all x 6= 0 with ∇h(x0)tx = 0. (E.34)

Then x0 is a strict local minimum of f subject to h(x) = 0. In fact, scalars γ > 0 and ε > 0 exist

such that

f(x) ≥ f(x0) +
γ

2
‖x− x0‖2 ∀x such that h(x) = 0 and ‖x− x0‖ < ε.

Proof. See section 3.2 of Bertsekas (1999). �

E.4.4 Equivalent Unconstrained Problem

In short, the constrained optimization problem can be studied via the following unconstrained

optimization problem

x = argmin {F (x, β)} . (E.35)

E.5 Constrained Problem: Inequality Constraints

Let the feasible domain be given by

D = {x ∈ Rp | h(x) = 0 and g(x) ≤ 0} . (E.36)

E.5.1 The Lagrangian

In this situation, the Lagrangian takes the form

Definition 116 The Lagrangian of the optimization problem (E.3) with domain (E.36) is given

by

F (x, β, µ) = f(x) + βth(x) + µtg(x), x ∈ D. (E.37)

where β = (β1, . . . , βmg)
t and µ = (µ1, . . . , µmh)t are the multipliers.

Remark 67 The sign of the added terms is usually taken as positive; for example, the last term

is usually taken as +µtg(x), instead of −µtg(x); nevertheless, we have used the latter form in

chapter three due to the particular function g(x) = −x.
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There are several ways of dealing with the inequality constraints problem; one of them is

based on the previous equality constraints framework (see section 3.3.2 of Bertsekas [1999]). The

following approach is not the most general, since some regularity conditions are needed, but it is

the most direct generalization of the previous theory (notice that the generalised Rayleigh quotient

λ(a) fulfils the regularity conditions).

E.5.2 Necessary Conditions

The following proposition generalises the Lagrange multiplier theorem (proposition 31).

Proposition 33 (Karush-Kuhn-Tucker Conditions) Let x0 be the local minimum of f sub-

ject to h(x) = 0 and g(x) ≤ 0, where f , h and g are continuously differentiable functions, and

assume that ∇hi(x0), i = 1, . . . ,mh and ∇gi(x0), i = 1, . . . ,mg are linearly independent; then

unique Lagrange multiplier vectors β0 and µ0 exist such that

∇xF (x0, β0, µ0) = 0 (E.38)

µ ≥ 0 with µi = 0 when gi(x0) < 0. (E.39)

If in addition f , h and g are twice continuously differentiable, there holds

xt∇2
xxF (x0, β0, µ0)x ≥ 0 (E.40)

for all x such that ∇hi(x0)tx = 0, i = 1, . . . ,mh, and ∇gi(x0)tx = 0 when gi(x0) = 0.

Proof. See section 3.3 of Bertsekas (1999). �

E.5.3 Searching Strategy

As Bertsekas (1999) states: One approach for using necessary conditions to solve inequality con-

strained problems is to consider separately all the possible combinations of constraints being active

or inactive (an inequality constraint gi(x) ≤ 0 is active at point x if the equality holds, and

inactive otherwise).

E.5.4 Sufficient Conditions

Proposition 34 (Second Order Conditions) Let f , h and g be twice continuously differen-

tiable, and let x0 ∈ Rp, β0 ∈ Rmh and µ0 ∈ Rmg such that

∇xF (x0, β0, µ0) = 0, h(x0) = 0, g(x0) ≤ 0 (E.41)

µ ≥ 0 with µi = 0 when gi(x0) < 0. (E.42)

xt∇2
xxF (x0, β0, µ0)x > 0 (E.43)
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for all x such that ∇hi(x0)tx = 0, i = 1, . . . ,mh, and ∇gi(x0)tx = 0 when gi(x0) = 0. Assume

also that

µi > 0 when gi(x0) = 0. (E.44)

Then x0 is a strict local minimum of f subject to h(x) = 0 and g(x) ≤ 0.

Proof. See section 3.3 of Bertsekas (1999). �

This result is based on the transformation of the problem to one with equality constraints, but

there are stricter versions of sufficient conditions.

Remark 68 Again from Bertsekas (1999): The sufficient conditions that we have discussed so

far [previous proposition] involve second derivatives and Hessian positive definiteness assumptions.

Our experience with unconstrained problems suggests that the first order Lagrange multiplier condi-

tions together with convexity assumptions should also be sufficient for optimality. Indeed this is so,

as we will demonstrate shortly. In fact we will not need to impose convexity or even differentiability

assumptions explicitly. A minimization condition on the Lagrangian function turns out to be

sufficient.

Proposition 35 (General Conditions) Let the problem be

x = argmin {f(x)} subject to x ∈ S and g(x) ≤ 0, (E.45)

where f and g are real valued functions on Rp and S is a given subset of Rp. Let x0 be a feasible

point which together with µ0 ∈ Rmg satisfies

µ ≥ 0 with µi = 0 when gi(x0) < 0 (E.46)

and minimizes the Lagrangian function F (x, µ0) over x ∈ (S), that is:

x0 = argmin{F (x, µ0)}; (E.47)

then x0 is a global minimum of the problem.

Proof. See section 3.3 of Bertsekas (1999). �

Remark 69 Note that the function f of this proposition can be a Lagrangian that implicitly

takes equality constraints into account.

E.5.5 Equivalent Unconstrained Problem

In short, the constrained —in x— optimization problem can be studied through the following

unconstrained —in x— optimization problem

x = argmin {F (x, β, µ)} subject to µ ≥ 0 with µi = 0 when gi(x) < 0. (E.48)
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E.5.6 Karush-Kuhn-Tucker Conditions

From the previous propositions, it is clear that the following definition is quite useful for referring

to the necessary and sufficient conditions.

Definition 117 The Karush-Kuhn-Tucker conditions (of first order) are given by
∇xF = 0

∇βF = 0

g(x) ≤ 0, µ ≥ 0 and µtg(x) = 0

(E.49)

or, in the usual differentiation notation, by
∂F
∂x

= 0
∂F
∂β

= 0

g(x) ≤ 0, µ ≥ 0 and µtg(x) = 0

. (E.50)

Note that the two first are related to minimizing the Lagrangian.

E.5.7 Nonnegativity Constraints

For the particular case g(x) = −x, that is, when the inequality constraints are x ≥ 0, the

conditions are given by 
∂F
∂x

= 0
∂F
∂β

= 0

xi ≥ 0, µi ≥ 0 and µixi = 0.

(E.51)

E.6 Some Particular Problems

In this section, some frequent problems similar to those of our framework are included.

E.6.1 Fractional Programming

Of special interest for our optimization problem is the following situation:

Proposition 36

x = argmin

{
f(x)

g(x)

}
subject to x ∈ D, (E.52)

where f and g are real functions on Rp and D is a given subset such that g(x) > 0 for all x ∈ D.

For β ∈ R, it can be defined

Q(β) = minx∈D {f(x)− βg(x)} . (E.53)

Suppose that a scalar β0 and a vector x0 satisfy Q(β0) = 0 and

x0 = argminx∈D {f(x)− β0g(x)} , (E.54)

respectively; then x0 is an optimal solution to the original problem.
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Proof. See exercise 2.1.17 of Bertsekas (1999). �

Remark 70 Using this fact, it is possible to reduce the problem to an equivalent problem without

quotient of functions.

E.6.2 Linear and Quadratic Problems

Also of special interest is:

Proposition 37 (Existence of Solutions) Let Q be a positive semidefinite symmetric p × p
matrix; let c and a1, . . . , am be vectors in Rp; and let b1, . . . , bm be scalars. Assume that the optimal

value of the problem

x = argmin
{
xtQx + ctx

}
subject to atjx + bj ≤ 0, j = 1, . . . ,m, (E.55)

is finite. Then the problem has at least one optimal solution.

Proof. See section 2.1 of Bertsekas (1999). �

E.6.3 Nonconvex Quadratic Problems

Finally:

Proposition 38 (Existence of Solution) Let Q be a symmetric —not necessarily positive

semidefinite— p × p matrix, let c ∈ Rp and a set D ⊂ Rp. Assume that the optimal value of the

problem

x = argmin
{
xtQx + ctx

}
subject to x ∈ D (E.56)

is finite; then an optimal solution in each of the following two cases exists:

1. D is specified by linear inequalities as in proposition 37.

2. D is the vector sum of a compact set and a closed cone.

Proof. See exercise 2.1.19 of Bertsekas (1999). �

135



References

[1] Abraham, C., P.A. Cornillon, E. Matzner-Løber and N. Molinari (2003). Unsupervised Curve

Clustering Using B-Splines. Scandinavian Journal of Statistics. 30 (3), 581–595.

[2] Abraham, C., G. Biau and B. Cadre (2006). On the Kernel Rule for Function Classification.

AISM. 58, 619–633.
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