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1 Prologue

This folder (where this file is) contains MATLAB code that implements—with some new features—the

classification methods for time series and functional data proposed in Alonso et al. (2008, 2012): DbC

and DbC -α both for classifying stationary and nonstationary time series, and WI and WD for classifying

functional data. Parts of the code were initially written in collaboration with some of my coauthors, Andrés-

-M. Alonso and Sara López Pintado, to whom I am grateful. Because of the huge amount of time that I

have spent on this code, well over that necessary to publish our works (e.g., preparing this helping file has

taken several weeks), we decided to maintain only my name in the authorship.
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The implementation has evolved from just the abovementioned methods to a more general implemen-

tation with which it is possible to optimize, modify, create, compare and select classification methods. For

each type of datum (time series and functional data) there are three scripts: one to work with simulated

data, other to work with real data and a third one to really classify new (unlabelled) data, the kind of

problem most researchers need to solve usually. Some ideas implemented in this package are, to the best

of my knowledge, new (I have named some concepts too); hence, I shall probably use them—alone or with

collaborators—in publications. Now, however, making a living is more important than publishing and being

lucky is more important than working hard. Or I think so.

I have spent some extra time preparing this code, so if someone detects any bug, I would be very grateful

to know about it. In writing this helping file, the criteria of Modern Language Association Style Manual and

Guide to Scholarly Publishing and Practical English Usage have been taken into account—see references

Gibaldi (1998) and Swan (1995). Suggestions and information about misprints or linguistic matters would

be welcomed too. I thank you very much for your help.

1.1 What Is New

In the present version of the package, some improvements and new features have been implemented:

1. Two previous packages, codeDFMforFD and codeRFDforTS, have been merged, and the code has been

modified so as to make it easier to maintain and reuse—the six main scripts of the new package are

different but share many lines.

2. The principal steps or tasks of the algorithms are identified with a number, which allows only these

parts to be changed—e.g., functional distance or transformation—or new methods to be designed.

Each method is determined by few numbers and a name. See section 2.4.

3. The value of a parameter—number of blocks for time series and differentiation order for functions—

can be optimized in each run. In this case, for each value a measure of the minimizing-power is shown.

See section 2.5.1.

4. When there is more than one method, in each run the most appropriate can be selected automatically.

In this case, for each method a measure of the minimizing-power is shown. See section 2.5.2.

5. For given samples it is possible, in the learning scheme determined by the previous method selection,

to select the most appropriate data transformation, distance, type of discriminant vector, multivariate

classification submethod, et cetera. Some of these ideas were outlined in my doctoral thesis.

6. Theoretical explanations have been included so that to explain how methodologies and scripts work—

e.g., effects on the quality of the estimations, or when a larger number of runs is necessary.

7. Some code has been written to reduce the computational effort (that described in the two previous

items can be used for this purpose too) or to control and warn the user. See section 2.8.

8. A new kind of script has been added, to obtain labels instead of error rates. The user can place new

data by applying different types of call. See section 3.

9. The preprogrammed stochastic models, for processes or functions, have been generalized by using

coefficients.
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10. Several simulation exercises have been included just as mere examples or to show some concepts.

A new version of this package—already partially written— with some new interesting capabilities and ideas

will appear in some months.

2 Main Features

2.1 Design of the Code

The code of this package has been designed:

1. To choose possible different sizes for the four training and testing samples.

2. To consider other pairs of models easily: it is enough to create new cases in dataExercisesFD or

dataExercisesTS.

3. For given data, to apply one classification method or to compare several ones. It is easy to consider

other existing methods rather than our proposals, they can be integrated in our schemes by using the

simple trick of calling the identity in one step and the method itself in the other.

4. When more than one method is applied, to select automatically the one that is expected to minimize

the estimated overall misclassification error rate. As a particular case, it selects automatically between

methods WI and WD, or betweeen methods DbC and DbC -α. A measure of the minimizing-power

of the methods is given after the B runs.

5. To design new global methods of classification by selecting the intermediate steps, since each global

method is determined by few numbers and a name.

6. For each method, to enter the initial vector of parameter values to be considered—number of blocks

for time series and differentiation order for functional data.

7. For each method, to select the parameter value that is expected to minimize the mean estimated

overall misclassification error rate. A measure of the minimizing-power of the values is given after the

B runs.

8. To make decisions fastly and automatically (without human supervision) about the method, the

distance, the transformation and the parameter value that are most convenient for the particular

framework. This has many practical applications, for example in Engineering.

9. To use different functional distances: L1 (default), L2, L∞, et cetera.

10. To use, as reference function of a set, the mean (default), the α-trimmed mean or others the user can

implement.

11. To gain access to the estimated error rates or the estimated labels of each group separately or jointly. In

some cases, the behaviour can be different for the two groups. Error rates are useful for methodological

researches, while labels are useful for applied researches or even teachers.
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12. To obtain graphical information during the first run: crude data, transformations of the data, discrim-

inant variables, expected mean estimated error rates, expected mean computational time, expected

minimizing-power measure of the parameter values or methods, et cetera. These figures, which also

show the similarity between the training and the testing samples of each group, can be used as a

descriptive and prospective tool.

13. To represent, after the runs, the estimated misclassification error rates of the algorithms graphically,

with the values of the parameter as labels—number of blocks for time series and differentiation order

for functional data.

14. When neither the parameter nor the method is optimized, to obtain an estimation of the results as if

it had been done.

15. To gain access to the computational times of each run through two measures: time spent for each

value of the parameter and time spent for the whole vector of values.

16. To record the results in a file, with enough information to analyse and represent the results later.

17. For time series, to consider the periodogram, the normalized (default) or nonnormalized version of the

integrated periodogram, or the logarithm of the periodogram. The user can easily implement other

functional data to be constructed from the series, as well as transformations of the previous ones.

18. For functional data:

• To add four types of smooth peak to any model.

• To apply a smoothing method to the crude functions (others can easily be implemented).

• To choose between the derivatives or the differentials of the functions.

• To select the best differentiation order or, alternatively, combine all of them through a multi-

variate vector.

• To consider only the crude functions or additional, possibly nonconsecutive derivatives or differ-

entials up to any order.

• To generalize the methodology to other types of discriminant variables, possibly not based on

the derivatives or differentials.

19. An additional function is included to generate tables in the LaTeX sintaxis—the user can edit this

function.

20. To make the code easy to maintain, reuse and generalize: all the scripts are different but share many

lines of code, lots of comments have been included, variables have been given meaningful names, et

cetera.

The code works with many quantities and values, for which management hypermatrixes (multidimen-

sional arrays) have been intensively used. Thus, it seems that these structures must play a central role in

modern programming languages.
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Figure 1: Ways of using the samples
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2.2 Ways of Using the Data

In figure 1 (expanded versions are given in appendix B) we represent how the available data are usually used

to estimate the misclassification error rates or the labels. Our scripts, described in section 3, implement

these three ways. The main idea is that each datum can be used several times (in different runs), but

preferably for only one of the three main tasks at the same time.

• In the scheme on the left, each datum is used only once, which is usually something difficult to afford.

• In the scheme in the middle, data are exploited more efficiently, since each datum is used B times.

• Finally, in the scheme on the left, the training data can be used one or several times, as desired.

On the number of runs B, too small a value does not guarantee a minimum quality of the estimations

involved in the process, while too big a value can cause overfitting (such a good fit to the data that the

method has poor behaviour when it is extrapolated). See section A.1.2.

It is worth noticing that the error of (good) estimators usually varies nonlinearly with the sample size,

so only with an endless quantity of data is the first scheme (on the left) applied to real data. In our imple-

mentation of the second and third schemes (in the middle and on the right), the highly recommended split is

mandatory while the recommended split is controlled by the parameter paramDataReuse (nevertheless, not

reusing the data may imply small samples in the inner loop, which is also undesirable—see section A.1.2.

The user can try both options).

The objective of the scheme on the right is to classify—as good as possible—the elements, only once.

The nested or inner loop of the schemes allows making decisions fastly and automatically (without human

supervision) so that to use the method, the distance, the transformation and the parameter value that best

fit the data. This has many practical applications.

When more than one classification method are to be applied, all of them are called with just the same

data (or almost the same data when the depth-based robustifying approach described in section 2.6.2, which

may remove some elements, is applied).
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2.3 Descriptive and Prospective Run

For the first run, when dataFigures = true the scripts generate some figures if paramOptimization =

false, as otherwise not all the values and methods are considered in the main loop, where figures are

generated. However, the user can previously execute the script without parameter optimization nor method

selection, that is, with paramOptimization = false and methodSelection = false.

The plots can provide useful descriptive and prospective information about the similarity of the groups,

the representativity of the training and testing samples, the discriminant power of the variables (a bimodal

character is desired), the parameter value or method that seems to minimize the error rate, et cetera.

The figures are based on one run, so perhaps executing this part of the code several times would be

advisable. In the examples of section 6, the user can see information of the same kind than that provided

during this run.

2.4 (Global) Classification Methods

Since our methodologies can be divided in two main steps (transformation of the crude data and classification

of the new type of datum), we use the adjective global to make it clear whether we are talking about the whole

classification process. In the code, each of these methods is determined by few numbers and a name—see

numbersTStoCLASSmethods and namesTStoCLASSmethods for time series, and numbersFDtoCLASSmethods

and namesFDtoCLASSmethods for functions. In the scripts, only our algorithms are implemented and called

by default, although users can call only one of them or implement new methods. Classification methods are

integrated in our schemes as follows.

2.4.1 Our Methods

From the meaning of the positions in numbersTStoCLASSmethods, the global methods that we proposed in

Alonso et al. (2008), for classifying time series, are:

• Method DbC, determined by 1 1 1 1

• Method DbC -α, determined by 1 2 1 1

while from the positions in numbersFDtoCLASSmethods the global methods proposed in Alonso et al. (2012),

for classifying functions, are:

• Method WI, determined by 1 1 1 1

• Method WD, determined by 1 2 1 1

• Method dKNN, determined by 1 3 1 1

2.4.2 How to Implement New Methods

For time series, a method not building functional data as an intermediate step can be implemented by

calling the identity in fromTStoFD (already implemented under the number 0) and the method itself in

fromFDtoCLASS. In general, new functional classification methods can easily be added directly or using

fromFDtoCLASS as mapping function. After this, it is necessary to edit in the code the switch-structures

that are just before and after the calls to the function fromFDtoCLASS:

9



1. In SCRIPTsimulatedTS, around lines 179 and 298.

2. In SCRIPTrealTS, around lines 378 and 491.

3. In SCRIPTnewTS, around lines 348, 468 and 476.

Finally, numbersTStoCLASSmethods and namesTStoCLASSmethods allow the call.

For functional data, a method not building multivariate data as an intermediate step can be implemented

in fromFDtoMV while the identity is called in fromMVtoCLASS (already implemented under the number 0). In

general, the user can directly implement new multivariate classification methods or use fromMVtoCLASS as

mapping function. After this, it is necessary to edit in the code the switch-structures that are just before

and after the calls to the function fromMVtoCLASS:

1. In SCRIPTsimulatedFD, around lines 439 and 453.

2. In SCRIPTrealFD, around lines 643 and 657.

3. In SCRIPTnewFD, around lines 595 and 607.

Finally, numbersFDtoCLASSmethods and namesFDtoCLASSmethods allow the call.

2.5 Optional Inner Loop

By running this optional code, some quick decisions can be made so that to reduce the calculations in

the main loop. Since these decisions are based on the estimation of the misclassification error rates, it is

important to take into account the possible poor estimation due to small sample sizes, regardless the training

sample sizes. See section A.1.2. When verbose = true, the estimations of the error rates are shown also

for this loop.

2.5.1 Parameter Optimization

The user enter the initial set of parameter values to be considered—number of blocks for time series or

differentiation order for functional data. When all the parameter values are considered, the output does not

provide direct information about how many times a value has minimized the error rate. By looking at either

the textual or the graphical information, a value or a range of values can be chosen for a later execution of

the code—see figure 8 in section 5.2.

Alternatively, by setting paramOptimization = true the user can enable the automatic optimization of

the parameter value for each (global) method. When this optimization is applied, the relative minimizing-

-power of each value is measured as described in section 2.5.3. The mean minimizing-power is shown after

the runs. On the other hand, when this loop is disabled, the minimum overall error of each run is registered

and the user is given an estimation of the error that would have arisen if the parameter had been optimized.

Since different values can be selected in different runs when the optimization is applied, the results of all

methods are textually and graphically shown after the B runs; the user must carefully interpret these results.

In our implementation, the parameter optimization is necessary to apply the method selection described in

section 2.5.2. This optimization is implemented in the two following versions.
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In Two Steps

This approach is available in the two first schemes of figure 1, in section 2.2, as they are thought for

researchers to evaluate or compare classification methods. In this framework, it makes sense to select in the

inner loop more than one parameter value—or even method—and consider them again, for a second chance,

in the outer loop (it can be thought of as a way of creating pseudoties). Thus,

1. In the inner loop, after considering all the initial parameter values, the minimum of the run-averaged

overall error rates is calculated. Then, the parameter values for which the method have provided

a rate inside the interval [minimum, minimum*(1+discretenessMargin)] are enabled for the main

loop:

methsXparams(i1,meanErrorRatesParam(i1,:)<=...

(methodMinError(i1)*(1+discretenessMargin))) = 1;

2. In the outer loop, all the parameter values previously selected are considered. Finally, the parameter

value for which the method provides the minimum run-averaged overall error rate is chosen. Through

the minimizing-power measure, our code registers possible, improbable ties.

The user can change the mentioned margin or disable it. This technique in two steps is a way of improving

not the classification methods themselves but the parameter optimization and therefore the estimation of

the error rates, as the final obtained estimation would correspond to a better estimation of the parameter

in the inner loop. This improvement, though, increases the computational effort.

In One Step

For the third type of script of figure 1, in section 2.2, as it is thought to really label new data, the parameter

value—and the method—must be selected as follows:

1. In the inner loop, after considering all the initial parameter values, the minimum of the run-averaged

overall error rates is calculated. Then, the parameter value for which the method provides the min-

imum is chosen. Through the minimizing-power measure, our code registers possible, improbable

ties.

2.5.2 Method Selection

The user can include more than one classification methods in the call. By looking at either the textual or

the graphical information, the user can select a method for a later execution of the code. When all the

methods are considered, the user does not have direct information about how many times a method has

minimized the error rate.

Alternatively, by setting methodSelection = true the code selects the method—and the parameter

value—that is expected to minimize the overall misclassification error rate. In this case, the code auto-

matically enables the parameter optimization described in section 2.5.1. It is allowed to apply the method

selection even for one parameter value only, but it is disabled if there is only one initial method. There

are several possible criteria to order the methods totally so as to select one. When this selection is ap-

plied, the relative minimizing-power of each method is measured as described in section 2.5.3. The mean

minimizing-power is shown after the runs. As a particular case, this approach can be used to select between

11



our methods. For example, when classifying time series with moderate training sample sizes, if there is

no contamination DbC uses all the data and tends to provide smaller error rates than DbC -α, while this

method leaves out the data with smallest depth and therefore tends to have better behaviour in the presence

of contamination. This selection is implemented in the two following versions.

In Two Steps

Since the discreteness effect described in section A.1.2 may affect the selection, it seems reasonable to

implement also a two-step approach in which more than one method can be selected in the inner loop so

as to consider it again, for a second chance, in the outer loop (it can be thought of as a way of creating

pseudoties). Such an implementation makes sense in the scripts whose aim is the evaluation or comparison

of classification methods, that is, in the two first schemes of figure 1, in section 2.2. As we considered a

margin in selecting the parameter values, now we use the mean of the estimations of the method for those

selected values (other criteria could be applied). Thus,

1. In the inner loop, for each method the mean of the run-averaged error rates for the parameter values

selected as described in section 2.5.1 is compute

methodValueCutoffs(i1) = mean(meanErrors(methsXparams(i1,:)));

where methsXparams(i1,:) is a vector with 0’s and 1’s, and their minimum is calculated (we can

call it minimum-in-mean). Then, those methods that have provided a mean outside the interval

[minimum, minimum*(1+discretenessMargin)] are disabled for the main loop:

methsXparams(methodMinError>(min(methodMinError)*(1+discretenessMargin)),:) =...

zeros(sum(methodMinError>(min(methodMinError)*(1+discretenessMargin))),length(paramValues));

2. In the outer loop, all the methods previously selected are considered. After the runs, the minimizing-

-in-mean method and its best parameter value are chosen. Through the minimizing-power measure,

our code registers possible, improbable ties.

Then, between two methods having the same behaviour in both the inner and the outer loop (this might

happen, because of the discreteness effect, especially for small-sized testing samples), the output of the

method allocated firstly in the call is shown. Notice that a method with good average behaviour for the

selected parameter values is preferred to a method with the smallest error rate for a value but worse mean

results for the selected parameter values (we suppose that the initial parameter values are not too sparse).

The user can change the mentioned margin or disable this two-step approach.

Finally, this technique in two steps is a way of improving not the classification methods themselves but

the selection procedure.

In One Step

For the third type of script of figure 1, in section 2.2, which is thought to label new data, both the parameter

value and the classification method are selected as follows:

1. In the inner loop, for each method the mean of the run-averaged error rates for the parameter values

selected as described in section 2.5.1 is computed
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methodValueCutoffs(i1) = mean(meanErrors(methsXparams(i1,:)));

where methsXparams(i1,:) is a vector with 0’s and 1’s, and their minimum is calculated (we can

call it minimum-in-mean). Then, the minimizing-in-mean method and its best parameter value are

chosen. Through the minimizing-power measure, our code registers possible, improbable ties.

Then, between two methods having the same behaviour in both the inner and the outer loop (this might

happen, because of the discreteness effect, for small-sized testing samples).

Learning Scheme

From a theoretical point of view, it is worth noticing that this method selection represents a way of

combining—as they all are involved—different classification methods.

A global method is determined by a transformation, a classification submethod, a distance, et cetera,

and the inner loop can be used to learn from the training data so that to classify the final testing samples

as good as possible. The automatic selection among our classification methods has already been mentioned,

and another specific application will be introduced in section 2.6.1. Now, we highlight some other interesting

applications of this learning scheme. Let be a global method, say [1 1 1 1]; then,

Transformation-Selection

Since each data transformations is characterized by a number in the first column of a matrix, the best of

three transformations can be automatically selected by considering the matrix

[1 1 1 1; 2 1 1 1; 3 1 1 1].

As particular cases, it can be considered several types of built function for time series and several types

of discriminant vector for functions—in our papers we considered, respectively, the integrated periodogram

and the discriminant vector based on derivatives or differentials.

Submethod-Selection

Since each classification submethod is characterized by a number in the second column of a matrix, the best

of three submethods can be automatically selected by considering the matrix

[1 1 1 1; 1 2 1 1; 1 3 1 1].

Distance-Selection

Since each distance is characterized by a number in the third column of a matrix, the best of three distances

can be automatically selected by considering the matrix

[1 1 1 1; 1 1 2 1; 1 1 3 1].

For example, in some situations we may be interested in possible peaks—representing an event—of the

functional data, while others we may want to ignore them.
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Reference-Selection

Since each type of set reference is characterized by a number in the forth column of a matrix, the best type

of three can be automatically selected by considering the matrix

[1 1 1 1; 1 1 1 2; 1 1 1 3].

This can be used, for example, to select among the mean, the trimmed mean and the weighted mean.

2.5.3 Minimizing Power

As a way to measure the relative importance of the parameter values and methods in minimizing the error

rates, we have described that:

• If the parameter optimization is enabled but the method selection is not, for each method a “unit of

parameter minimizing-power” is distributed among the minimizing parameter values (usually one). If

there are p parameter values, for method i-th, {u(p)ij }, for j = 1, ..., p, with
∑p

j=1 u
(p)
ij = 1.

• If both the parameter optimization and the method selection are enabled, a “unit of method minimizing-

power” is distributed among the minimizing methods (usually one) and, at the same time, for each min-

imizing method a “unit of parameter minimizing-power” is distributed among the minimizing parame-

ter values (usually one). If there are m global methods, {u(m)
i }, for i = 1, ...,m, with

∑m
i=1 u

(m)
i = 1. In

this case, the quantities {u(p)ij } takes also into account the number of times method i-th has minimized

the overall error rate.

For a parameter value or a method, the previous quantities u
(p)
ij and u

(m)
i are affected by—take into account—

the other parameter values and other methods in the comparison, that is, it is a relative measure of the

minimizing-power.

Registering the minimizing-power in this manner allows noticing ties (among values and among methods),

although almost always only one parameter value and one method are selected and these measures can

additionally be interpreted as the relative frequencies with which each value or method has minimized the

overall error rate.

2.6 Robustifying Techniques

2.6.1 Selection-Based

When there are several (global) methods, the schemes of figure 1, in section 2.2, allow selecting the method

with the smallest estimated overall error rate in the inner loop so that to use it in the outer loop—see the

details in section 2.5.2. If one of the methods is robust, it is expected to be automatically selected when a

noticeable amount of atypical data is present in the samples.This can be thought of as the robustification

of the whole classification process.

This selection-based approach is a characteristic of the schemes, not a robust classification method in

itself. The importance of the robust method could be noticed by looking at the minimizing-power measure.
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2.6.2 Depth-Based

In this section, an approach—of which I am the author—to robustify any classification method is described.

It consists in identifying the deepest elements at the beginning so that to remove them from the training

data during the runs—although they are maintained in the final testing samples. In our methodology for

time series, the depth is applied at the functional data level (after the functions are constructed from the

series), while in our methodology for functional data the depth is applied at their level (crude data). In

classifying time series, this robustifying process is an alternative—recommended for big sample sizes—to

the robust algorithm DbC -α. For each global method and each parameter value:

1. The deepest functional elements are identified. They can be different for each method and even each

parameter value.

2. In the inner loop, only these elements are maintained in both the training and testing samples (see

why in section A.1.1). After removing the elements with the smallest depth, the run of the loop is

registered as untrustworthy—for this method and parameter value—if the two testing samples are

empty or so is any of the two training samples. This step can imply a slight reduction—usually

negligible in practice—in the sample sizes or in the number or runs. The overall error rates are

estimated by using only the trustworthy runs.

3. In the outer loop, the deepest elements are maintained in the training samples, while the testing

samples remain unchanged so that to allocate all the initial data.

Another implementation is possible: after considering only the deepest elements of the training data of the

outer split, the split of samples of the inner loop can be applied for each method and parameter value. In

our implementation, the same splits of the samples are applied to each method and parameter value, and

then each method decides which elements are trustworthy; this maximizes the similarity of the samples and

also guarantees that just the same data are used by all the methods when no element is removed from the

samples. On the other hand, this avoids the possible variability that could come from the splits and not

from the methods themselves.

It is possible to think about our implementation as a way of working with the truncated probability

distributions of the underlying stochastic models. Notice, though, that in the outer loop all data are taken

into account for estimating the error rate.

On the other hand, this technique is related to some effects, namely: negative training- and testing-

-sample-size effects in the inner loop, a training-sample-size effect in the outer loop, training and testing

strengthening and weakening effects, and, for some methods, a sample-size time effect. See section A.

We have implemented this approach only in the scripts for real or new data, since for simulation exercises

the user can control the characteristics of the data (or the other scripts can be adapted). Some simulation

exercises have shown that the method DbC with this robustifying approach can outperform the robust

method DbC -α.

Finally, this depth-based robustifying approach can be applied outside the framework of this package,

to other type of datum, to other classification methods or with other depth measure.
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2.6.3 (Unweighted) Majority-Vote

In the scripts for new data, our code provides the labels of the classification methods plus, when B > 1,

the unweighted majority-vote classifier (it provides useful information only when the parameter value has

been optimized, as otherwise the same labels are obtained in all runs). Theoretical explanations on the

robustifying effect of averaging several classifiers are given in section A.1.5.

It is worth noticing that this approach is a characteristic of the schemes, not a robust classification

method in itself.

2.7 Computational Time

The scripts of this package show textual and graphical information about the computational time. From

it some patterns of dependence may appear: for series computational time depends nonlinearly with the

number of blocks while for functions it does not depend on the order of differentiation. Computational time

is measured in two manners. In a hypermatrix the time that each global method spents for each value of

the parameter is registered, while a matrix contains the joint time that each global method spents for all

the parameter values.

When the parameter is optimized, the individual measure must be cautiously interpreted as it depends

also on the number of times that each value is selected (absolute frequencies of the parameter values), not

only on the global method itself—in this case, though, the user is usually interested in the joint measure.

When the method selection is enabled, computational time depends also on the number of times that each

method is selected (absolute frequencies of the methods).

Apart from the computer on which the code is run, there are some other facts that may affect the

computational time registered—see section A.2.

2.8 Reducing Computational Effort

We have written some code to make algorithms and schemes faster. Most of these ideas can be applied

outside the framework of this package.

1. The selection of any initial set of values for the parameter, possibly nonconsecutive, allows avoiding

additional effort for some models—see figure 8 in section 5.2.

2. Some time-consuming calculations—for example, the functional transformations of the time series or

the calculation of the depth—are made for each datum only once, before the main loop.

3. In the scripts for simulated data, the code tries to generate all the data, for all the runs of the main

loop, at the beginning; if there is any problem with the memory of the computer, the samples for each

run are subsequently generated inside the loop. The user can edit the code to force the generation

of the data in the main loop, which would reduce the necessary memory but would increase the

computational time. As regards the inner loop, the simulated data are not precomputed, although

the user can implement this option.

4. The optimization of the parameter value in the inner loop reduces the calculations in the outer one.

5. The automatic method selection in the inner loop shortens the whole classification process.
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6. When possible, matricial calculations are applied rather than for-loops—see, for example, the code

of distancesFD or funcARMApq.

7. To reuse some calculations when several methods are subsequently applied, in considering all possible

parameter values and methods the nesting order is not

for i1 = 1:size(numbersTStoCLASSmethods,1)

for p = 1:length(paramValues)
...

but rather we make it

for p = 1:length(paramValues)

for i1 = 1:size(numbersTStoCLASSmethods,1)
...

For a run, given the data and the parameter value p, this allows reusing the transformations applied

by previous methods.

if isequal(i1,1) ||...

(i1>1 && ∼isequal(numbersTStoCLASSmethods(i1,1),numbersTStoCLASSmethods(i1-1,1)))
...

else
...

end

However, this cannot be applied when methods change data—e.g., with the technique of section 2.6.2.

Finally, in implementing this idea for more than two steps, that all the previous steps are the same

must be checked.

8. As a consequence of using fewer but better elements in the samples, computational time may decrease—

see section A.2.1.

9. Some “unnecessary” parts of the code, written with controlling or monitoring purposes, can be disabled

manually. For example:

• In the scripts for simulated or real data, the two-step approaches of sections 2.5.1 and 2.5.2.

• In the scripts for new data, the precaution of including the data also in the testing sample of

group 2 to check whether, as expected, the same labels are obtained.

• For time series, in the scripts for real or new data, the trick to solve the inherent effect described

in A.2.4, if: (i) the user is not interested in the accuracy of the computational time; (ii) many

runs will be considered; or (iii) or the samples have many elements (and must be removed in the

latter case).

10. Other tricks can simplify the calculations, namely: overwriting variables—instead of creating others—

saves memory (although, on the other hand, resizing variables lasts); not multiplying by a constant

before comparing two quantities if they will not be used later; not creating unnecesary copies of some

data but referring to their position (row or column); et cetera.
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11. For time series, the length T is recommended to be a power of two—see section A.2.2.

12. In our algorithms for classifying functions, considering differentials rather than derivatives needs fewer

calculations.

2.9 Remarks and Pieces of Advice

In this section, we highlight some details of the schemes, the methods and the output, on the one hand, and

we advise to avoid wrong interpretations and computational problems, on the other hand.

2.9.1 Initial Values and Schemes

1. Some parameters have no default value assigned in the scripts, and the user must select it.

2. By looking at figure 1, in section 2.2, the user must choose valid, proper values for the sample sizes

of the loops. When the depth-based robustifying technique (subsection 2.6.2) is applied, in most runs

the sizes of the samples are slightly reduced, since only the deepest elements are maintained in the

samples; for small sample sizes this may worsen the discreteness effect described in section A.1.2 and

even cause a crash if all the elements are removed from a sample (the probability of this occurring

increases with α and the number of runs). The code skips and registers—for the posterior estimation

of the error rate—the runs in which the two testing samples are empty or so is any of the two training

samples:

if isempty([positionsTestingGroup1paramTemp;positionsTestingGroup2paramTemp])||...

isempty(positionsTrainingGroup1paramTemp) ||...

isempty(positionsTrainingGroup2paramTemp)
...

continue

end

3. The parameter T is related to the amount of information available in the data, so the estimations of

the error rates strongly depend on it. For small values of T , it is not possible to consider as many

blocks (for time series) or derivatives/differentials (for functions) as desired. On the other hand, to

capture the details of some models, a large value for T is necessary. Our code covers the case of

equispaced data (equispaced variable t, really).

4. Time series and functions are allocated as rows in the matrixes of data.

5. After initializing the statistical and setting parameters, the code sets some quantities and does some

calculations, for example: some transformations are applied, some quantities are measured, the method

selection is disabled when there is only one method, the parameter optimization is enabled if so was

the method selection, et cetera.

6. In classifying new data, if by default the implemented rule allocates the frontier elements (those

equally distanced to both groups) to one of the groups, as the rule given by expression 18 does,

the estimations of the error rates or the labels will show spurious information. Our code counts the

number of elements for which this occurs
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equalDist = ([groupMV1test(:,i1,p); groupMV2test(:,i1,p)] == 0);

warns the user and allocates these elements at random

if any(equalDist)
...

outclass(equalDist) = randi(2,sum(equalDist),1)-1;

end

7. Let the populations be P (k), k = 1, . . . ,K, an element be e ∈ ∪kP (k) and the classification rule be

C : ∪Kk=1P
(k) → {1, 2, . . . ,K}. Let us define the successes E (k) = {C(e) 6= k}∩{e ∈ P (k)}, k = 1, . . . ,K;

that is, E (k) is the event misclassifying an element of the k-th population. For two populations the

overall error can be written, for an elements chosen at random from any population, as

p(E) = p({C(e) = 2} | {e ∈ P (1)}) · p({e ∈ P (1)})

+p({C(e) = 1} | {e ∈ P (2)}) · p({e ∈ P (2)}). (1)

This is the theoretical misclassification error rate. To estimate the overall error rate, the previous

formula can be applied by using the two estimations and by estimating the quantities p({e ∈ P (i)})
through mi/(m1 +m2). This formula is applied in our algorithms at the end of the inner loop, since

sometimes the size of the testing samples may be reduced slightly:

errorRatesParam = (m1param*errorRatesGroup1param +...

m2param*errorRatesGroup2param)/(m1param+m2param);

On the other hand, at the end of the main loop the overall error rate is calculated by dividing the

number of all misclassified testing elements over the total number of them, that is, as

errorRates = (errorRatesGroup1 + errorRatesGroup2)/(m1 + m2);

before dividing errorRatesGroup1 and errorRatesGroup2 by m1 and m2, respectively. This alterna-

tive formula needs fewer calculations than the first.

8. In general, if by default frontier elements are assigned to a group (see expression 18), labels could

be different for these elements. The labels shown by our code are calculated after allocating the new

data as final testing sample of group 1. Our code checks that the same classification is obtained when

the data are allocated in the final testing samples of both groups

if ∼isequal(sum(pseudoMisclass1 ∼= pseudoMisclass2),M)

disp([‘Different classification, when (p,i1)=(’ num2str(p) ‘,’ num2str(i1) ‘)

for new data ‘ num2str(find(pseudoMisclass1 == pseudoMisclass2)) ])
...

end

For some models or classification rules, frontier elements might be differently labelled merely for having

been placed at random.
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2.9.2 Classification Methods

9. For time series:

(a) When contamination is introduced, 10% of the contaminating series are allocated at the begin-

ning of the training sample of group 1, since the plotting functions use the first rows of the

matrixes. If there is only one of such series, it is allocated at the beginning of the mentioned

sample.

(b) In simulation exercise 3, which involves autoregressive processes with time-varying coefficients,

we have checked that values between ck2 = −0.9 and ck2 = +0.9 do not cause, for any value of t,

the roots of the characteristic polynomial of the process to be inside the unit circle (the process

would not be stationary for some values of t).

10. For functions:

(a) In our framework, the data—the values of the variable t, really—are supposed to be equispaced.

Hence, for functional data the derivatives and differentials are respectively calculated as follows

((T-1)̂diffOrder)*diff(groupFD1,diffOrder,2);

and

diff(groupFD1,diffOrder,2);

For unevenly spaced data, the user can write preprocessing code to interpolate the functions

and then take new evenly spaced data, or, alternatively, apply specific techniques for this sort

of datum—see, for example, Gerald and Wheatley (1999).

(b) In our algorithms for classifying functions, considering differentials instead of derivatives does

not need dividing by a tiny quantity, which may avoid too big values.

(c) Algorithms WI, WD and dKNN work with the same discriminant variables, and hence their

information—textual and graphical—about these variables is the same.

(d) In our procedure WI, if a1 of aF is negative, this vector is multiplied by −1 (both vectors are

eigenvectors of the same eigenvalue and determine the same projecting direction).

11. Let eps be the positive distance from ABS(X) to the next larger in magnitude floating point number

of the same precision as X (usually 2.2204e − 016). In this package, the discriminant variables with

absolute value smaller than 3
√
eps are multiplied by 0:

groupsMV = groupsMV.*(abs(groupsMV) > (eps)(̂1/3))

groupsMVtest = groupsMVtest.*(abs(groupsMVtest) > (eps)(̂1/3))

A crash may occur if the models are such that all the discriminant variables take values extremely

close to zero.

12. With respect to the within-group variability of the discriminant variables, only those with pooled

unbiased estimated variance bigger than variaCutoff are considered in the multivariate vector of

discriminant variables:
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Sw = ((n1-1)*cov(X(1:n1,:)) + (n2-1)*cov(X((n1+1):(n1+n2),:)))/(n1+n2-2)

varsIncluded = find(diag(Sw) > variaCutoff)

13. The MATLAB’s function classifyMod validates the pooled covariance matrix Sx of the multivariate

data. For some models and many variables, we have obtained Sx being singular in some runs. The

probability of this occurring increases with the number of discriminant variables and the number or

runs.

14. MATLAB dependences:

(a) To smooth random noise in some functional models implemented in dataExercisesFD, the func-

tion csaps of the Curve Fitting Toolbox of MATLAB is called.

(b) As implementation of the multivariate k-nearest neighbours classification method, called in

fromMVtoCLASS, the function knnclassify of the Bioinformatics Toolbox of MATLAB is used.

2.9.3 Output Information

15. When necessary, some important information is textually shown even if verbose = false, namely:

the variables with no variability between samples, the number of elements in the frontier, the untrust-

worthy runs, and the different labelling of new data.

16. When plotting information with descriptive or prospective purposes, it is recommended to execute

the script several times, since the normal statistical generation of the data or their split can lead to

slightly different numerical and graphical results. A careful interpretation of the figures is always

recommended in Statistics (for example, the range of values of the vertical axis).

17. When dataFigures = true, many plots are generated. The user can modify this behaviour.

18. Some figures include the testing elements against the training sample means.

19. Although only some series or functions are included in their figures, the values of the discriminant

variables are included in the graphics for all the elements of the samples—also the variables not used

by the methods because of their negligible variability.

20. In most figures, the axes are automatically adjusted. The user can edit the characteristics of the

figures easily: axes, titles, colors, et cetera.

21. When m1 = 1 and m2 = 1, the figures are based on a split of the data with 33% for the testing

samples; that is, the parameter numElementsToPlot is ignored.

22. Since for some types of call different parameter values and methods can be selected in different runs,

after the main loop some results are textually and graphically shown for all methods, and the user

must carefully interpret these results when either the parameter optimization or the method selection

has been applied.

23. If, to integrate a new method, the user calls the identity transformation in any step of our method-

ologies (see section 2.4), different figures will show the same information.

24. When leaveOneOut = true, the final boxplots for the error rates are meaningless.
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Figure 2: A two-dimensional representation from a three-dimensional one
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25. For functional data, when paramOptimization = false the discriminant function

y(x) = atx =

q∑
i=1

aixi (2)

is built from the discriminant variables; then, the vector a = (a1, . . . , aq)
t determines a direction in

Rq and the code draws it for the cases q = 2 and q = 3.

26. Software programs usually work with the labels 0 and 1 for the two groups; we show 1 and 2 in

the textual information; yet they are registered as 0 and 1 in the matrixes. In the scripts for new

data, when B > 1 the majority-vote classifier is shown with the label 0 for ties. It provides useful

information only when the parameter value has been optimized—otherwise all runs have the same

labels.

27. Because of some possible effects—see section A.2.4—the user is recommended to consult the compu-

tational time of a run other than the first.

28. Some crashes may not be caused by the code. For example, in our methodology to classify functions,

the code can manage as many derivatives or differentials as desired, and the limit can come from the

hardware (memory), the software (we have tested the code with the orders diffOrders=1:30) or the

theory (with many discriminant variables, the sample pooled covariance matrix can be singular).

29. MATLAB allows the user to rotate the figures by using the mouse, even in frames with several figures.

For example, in figure 2 an approximately two-dimensional representation is obtained from the three-

-dimensional version.

3 Scripts

For each type of datum—time series or functions—there are three different scripts. Two of them are thought

for researches to compare the behaviour of classification methods by using simulated and real data, while

the third allows applied researchers or even teachers to label new data. All the scripts are different but

share many code lines.

SCRIPTsimulatedTS and SCRIPTsimulatedFD

They allow applying our procedures—or others’ methods—to two-group classification problems with simu-

lated stochastic processes or stochastic functions, respectively. The scheme on the left of figure 1, in section

2.2, is implemented in these scripts. Their main characteristics are:
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• Cross-validation is not implemented, as the user generates the data.

• For parameter optimization, the two-step approach of section 2.5.1 is implemented.

• For method selection, the two-step approach of section 2.5.2 is implemented.

• The depth-based robustifying technique of section 2.6.2 is not implemented, as the user generates the

data.

If desired, the user can adapt the scripts for real data so that to used them with simulated data.

SCRIPTrealTS and SCRIPTrealFD

These scripts allow the application of classification procedures to two-group classification problems with real

time series or functions, respectively. The scheme in the middle of figure 1, in section 2.2, is implemented in

them. Notice that in general it is not possible (it would be too lasting) to exhaustively consider all possible

subgroups of m1 and m2 elements out of n1 and n2. When m1 = 1 and m2 = 1, if leaveOneOut = true,

all the elements are subsequently left out once, and only once; if leaveOneOut = false, an element of each

group, chosen at random, is left out in each run. The main characteristics of this type of script are:

• Cross-validation is implemented.

• For parameter optimization, the two-step approach of section 2.5.1 is implemented.

• For method selection, the two-step approach of section 2.5.2 is implemented.

• The depth-based robustifying technique of section 2.6.2 is implemented.

SCRIPTnewTS and SCRIPTnewFD

The final application of any classification method requires working with few—even one—new unlabelled

data, which makes it impossible to know the number of misclassified elements. That is why all the tasks

depending on the estimated error rates must be carried out just after the inner loop, e.g., optimizing the

parameter and selecting the method. The scheme on the right of figure 1, in section 2.2, is implemented in

these scripts. This third kind of script is an adaptation of that for real data. The final testing samples can

have any number of data, while large final testing samples are desired in the previous scripts for simulated

and real data so as to estimated the error rates properly. The main characteristics of this type of script are:

• The final testing data are always the data to be allocated.

• The labels, rather than the error rates, are obtained in the outer loop. In the textual information, the

code shows the classification obtained when the data are allocated in the testing sample of group 1.

Additionally, as a control measure the new data are also introduced in the testing sample of group 2

so that to warn the user if any element is classified differently. On the other hand, if several methods

provide the same result, the results of the method firstly called are shown.

• Cross-validation is implemented.

• For parameter optimization, the one-step approach of section 2.5.1 is implemented.
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• For method selection, the one-step approach of section 2.5.2 is implemented.

• The depth-based robustifying technique of section 2.6.2 is implemented.

• The scheme allows the user to choose between two approaches:

– Using all the training data only once to obtain the classification.

– Splitting the training data in the inner loop to obtain several classifications of each new datum.

When B>1 our code shows the labels of the runs and the majority-vote classifier.

In the second approach, the classifiers of the runs can be considered “weaker” than the unique classifier

of the first approach, in the sense that they are based on fewer data (sample-size effects—see section

A.1.2). Nevertheless, the second approach takes advantage from several facts: (i) for some runs the

subsamples do not contain the contaminants and therefore are more reliable; (ii) there is a “natural”

reduction of variability due to the combination of several “weaker” classifiers (run-averaging effect—

see section A.1.5). Finally, when neither the parameter optimization nor the method selection is

enabled, only the case B=1 makes sense, as the same labels would be obtained for other runs, and the

majority-vote classifier would be useless.

4 Functions

In this section, the functions programmed in this package are introduced. Apart from the following infor-

mation, in the file where each function is written there is information on the input and output arguments,

as well as some pieces of advice.

classifyMod

This function is a version of the MATLAB’s function classify that provides the linear classifier as output.

dataExercisesFD

This function generates pairs of stochastic functional models. The parameters are [c11 c12 · · ·] and [c21 c22 · · ·],
entered through paramVector1 and paramVector2, respectively. To smooth the random noise, the first

method of smoothingFD is called; this method needs the function csaps of the Curve Fitting Toolbox of

MATLAB. If desired, the user can introduce contaminating functions directly in the scripts, as we have done

in some examples of section 6.

When numberExercise = 1: The models are

X (1)
e = c11 · t+ c12 · Ue
X (2)
e = c21 · t+ c22 · Ve

, (3)

where Ue is a uniform random variable on the interval (0, 1), and Ve is a uniform random variable

on the interval (1/2, 3/2).

When numberExercise = 2: The models are
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X (1)
e = (c11 · t+ c12 · Ue)2

X (2)
e = c21 · t2 + c22 · Ve

, (4)

where Ue is a uniform random variable on the interval (0, 1), and Ve is a uniform random variable

on the interval (0, 1).

When numberExercise = 3: The models are

X (1)
e = (c11 · t+ c12 · Ue)2 + c13

X (2)
e = (c21 · t+ c22 · Ve)2

, (5)

where Ue is a uniform random variable on the interval (0, 1), and Ve is a uniform random variable

on the interval (1/2, 3/2).

When numberExercise = 4: The models are

X (1)
e = c11 · t+ c12 · ε(1)e (t)

X (2)
e = c21 · t+ c22 · ε(2)e (t)

, (6)

where ε(k)e , k = 1, 2, are (the spline smoothing of) Gaussian processes with zero mean and

covariance function σ(t, s) = 0.25 · exp (−|t− s|2). Similar models were considered in López-

-Pintado and Romo (2006), although as slopes they considered 4 and 7 instead of 4 and 4.5.

When numberExercise = 5: The models are

X (1)
e = Ueh1(t) + (1− Ue)h2(t) + c11 · ε(1)e (t)

X (2)
e = Veh1(t) + (1− Ve)h3(t) + c21 · ε(2)e (t)

, (7)

where Ue and Ve are uniform random variable on the interval (0, 1), the processes ε(k)e , k = 1, 2 are

(the spline smoothing of) white noise and h1(t) = max(6/20−|t−10/20|, 0), h2(t) = h1(t−4/20)

and h3(t) = h1(t + 4/20), with t ∈ [0, 1]. Similar models were considered in Ferraty and Vieu

(2003).

When numberExercise = 6: The models are

X (1)
e = c11 · t+ c12 · ε(1)e (t) + c13 · f(t)

X (2)
e = c21 · t+ c22 · ε(2)e (t)

, (8)

where ε(k)e , k = 1, 2, are (the spline smoothing of) Gaussian processes with zero mean and

covariance function σ(t, s) = 0.25 · exp (−|t− s|2), and f(t) is the probability density function

of a normal random variable with mean 0 and standard deviation 0.001.

When numberExercise = 7: The models are

X (1)
e = c11 ·Dc13

(t) + c12 · ε(1)e (t)

X (2)
e = c21 · Fc23(t) + c22 · ε(2)e (t)

, (9)

where DN(t) = sin((N+1/2)t)
sin(t/2) is the Dirichlet’s kernel, FN(t) = 1

N

(
sin(Nt/2)
sin(t/2)

)2
is the Fejér’s

kernel, and ε(k)e , k = 1, 2, are (the spline smoothing of) white noise.
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When numberExercise = 60: The models are

X (1)
e = c11 · t+ c12 · ε(1)e (t) + c13 · Ue · f(t)

X (2)
e = c21 · t+ c22 · ε(2)e (t)

, (10)

where ε(k)e , k = 1, 2, are (the spline smoothing of) Gaussian processes with zero mean and

covariance function σ(t, s) = 0.25 · exp (−|t− s|2), the function f(t) is the probability density

function of a normal random variable with mean 0 and standard deviation 0.001, and Ue is a

uniform random variable on the interval (0.8, 1).

When numberExercise = 70: The models are

X (1)
e = c11 · Ue ·Dc13

(t) + c12 · ε(1)e (t)

X (2)
e = c21 · Ve · Fc23(t) + c22 · ε(2)e (t)

, (11)

where DN(t) = sin((N+1/2)t)
sin(t/2) is the Dirichlet’s kernel, FN(t) = 1

N

(
sin(Nt/2)
sin(t/2)

)2
is the Fejér’s

kernel, ε(k)e , k = 1, 2, are (the spline smoothing of) white noise, and Ue and Ve are uniform

random variables on the interval (0.8, 1).

dataExercisesTS

This function generates pairs of stochastic process models. The parameters are [c11 c12 · · ·] and [c21 c22 · · ·],
entered through paramVector1 and paramVector2, respectively. When called with the parameter contamType

the contaminating series are generated; alternatively, the user can introduce contaminating series directly

in the scripts, as we have done in some examples of section 6.

When numberExercise = 1: The models are

Two autoregressive moving average, ARMA(1,1), processes {Xt} and Yt:

X
(i)
t = c11 ·X(i)

t−1 − c12ε
(i)
t−1 + ε

(i)
t t = 1, . . . , T and i = 1, . . . , I

Y
(j)
t = c21 ·X(j)

t−1 − c22ε
(j)
t−1 + ε

(j)
t t = 1, . . . , T and j = 1, . . . , J

, (12)

where ε
(i)
t and ε

(j)
t are independent and identically distributed random variables following the

standard normal distribution. Series are stationary in this case. Contamination A. It consists

in switching the values of the two parameters. Contamination B. This type of contamination

corresponds to a parameter value of c11 = −0.9 instead of the correct value. Contamination

C. Equal to contamination B, but using a value +0.9 instead of -0.9.

When numberExercise = 2: The models are

Two processes composed half by white noise and half by an autoregressive process of order one:

X
(i)
t =

{
ε
(i)
t if t = 1, . . . , T/2

X
(i)
t = c11 ·X(i)

t−1 − c12ε
(i)
t−1 + ε

(i)
t if t = T/2 + 1, . . . , T

Y
(j)
t =

{
ε
(j)
t if t = 1, . . . , T/2

Y
(j)
t = c21 ·X(j)

t−1 − c22ε
(j)
t−1 + ε

(j)
t if t = T/2 + 1, . . . , T

, (13)
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with i = 1, . . . , I and j = 1, . . . , J . In this case, the series are made up of stationary parts,

but the whole series are not stationary. Contamination A. It consists in switching the values

of the two parameters in the ARMA half of the processes. Contamination B. This type of

contamination corresponds to a parameter value of c11 = −0.9. Contamination C. Equal to

contamination B, but using a value +0.9 instead of -0.9.

When numberExercise = 3: The models are

The stochastic models in both classes are slowly time-varying second order autoregressive proc-

esses:
X

(i)
t = φ1(t, c11, c12) ·X(i)

t−1 − c13 ·X
(i)
t−2 + ε

(i)
t t = 1, . . . , T

Y
(j)
t = φ2(t, c21, c22) · Y (j)

t−1 − c23 · Y
(j)
t−2 + ε

(j)
t t = 1, . . . , T

, (14)

with i = 1, . . . , I, j = 1, . . . , J and φk(t, ck1, ck2) = ck1 · [1 − ck2 cos(πt/1024)] (see Huang et

al. [2004]). Note that a coefficient of the autoregressive structure is not fixed and it changes

with time, making the processes nowhere stationary. Contamination A. The parameter value

c12 = 0.5 is substituted by the value 0.2. Contamination B. This type of contamination

corresponds to a parameter value c12 = −0.9 instead of the correct value. Contamination C.

Equal to contamination B, but using a value +0.9 instead of -0.9.

distancesFD

This function implements distances between two functions, χ1(t) and χ2(t).

When numberFDdistance = 0: The L∞ distance is used

d(χ1, χ2) = maxt{|χ1(t)− χ2(t)|} (15)

When numberFDdistance = 1: The L1 distance (default) is used

d(χ1, χ2) =

∫ +1/2

−1/2
|χ1(t)− χ2(t)|dt (16)

When numberFDdistance = 2: The L2 distance is used

d(χ1, χ2) =

(∫ +1/2

−1/2
(χ1(t)− χ2(t))

2dt

)1/2

. (17)

The user can easily add other distances. To exploit the speed of the matricial calculations, the argument X

of our MATLAB function can be a matrix.

fromFDtoCLASS

It is a function to facilitate the application of any functional data classification method. Only those for our

proposals are implemented by default, but the user can easily add others—see section 2.4.

When numFDtoCLASSmethod = 1: It is applied the rule

C(e) =

{
1 if x < 0

2 if x ≥ 0
(18)
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based on the the univariate discriminant variable

x = d(χX ,R(1))− d(χX ,R(2)), (19)

where, for our procedures, χX is the function constructed from the series X and R(k) is the representative

function—the mean function, for this method—of the training sample of the k-th group. This discriminant

variable, used in our method DbC, were defined in Alonso et al. (2008).

When numFDtoCLASSmethod = 2: It is applied the rule based on the univariate variable of the form 19 but

with the α-trimmed mean, instead of the mean, as representative function for each group. This variable,

used in our method DbC -α, was also introduced in Alonso et al. (2008).

fromFDtoMV

For any function χ, this function calculates a vector of discriminant variables

x = (x1, x2, . . . , xq)
t. (20)

This reduction of the data dimension implies a loss of information, but also a better framework to learn in,

since sample sizes are bigger than data dimension—the curse of dimensionality is avoided—and the risk of

overfitting is smaller.

When numberFDtoMVmethod = 1: The discriminant variables are

xi = d(Di−1χ,Di−1χ
(1)

)− d(Di−1χ,Di−1χ
(2)

), (21)

for i = 1, 2, . . . , q, where χ is the function and Di−1χ
(k)

= n−1k
∑nk

e=1D
i−1χ(k)

e , k = 1, 2. The parameter

diffsMode allows choosing between Diχ = diχ
dti

or Diχ = diχ (the differential is defined as diχ = χi)dti =
diχ
dti
dti). The latter case is a redimension of the former.

The term dχ(t) has the same unit of measure as χ(t), and the term dt the same as t. Therefore,

supposing that a variable t and a function χ(t) are not dimensionless (scalars without unit of measure) and

they do not have the same unit of measure, the derivative D1χ(t) = dχ(t)/dt has different dimension to its

original function. As a consequence, all the discriminant variables are dimensionless only when t and χ(t)

are dimensionless or have the same dimension. When the derivatives can take large values (for example, if

narrow picks are considered in the models), the differentials can avoid some computational problems, since

they are not divided by a tiny quantity. Besides, the derivatives imply more computes and memory. These

discriminant variables, used in our methods WI and WD, were introduced in Alonso et al. (2012).

fromMVtoCLASS

It is a function to facilitate the application of any multivariate classification method to the vector of discrim-

inant variables

x = (x1, x2, . . . , xq)
t. (22)

There are some auxiliary functions in the same file—see section 2.4. On the other hand, in Alonso et al.

(2012) we defined DFMi as the method based on the i-th discriminant variable, that is, the rule

C(e) =

{
1 if xi < 0

2 if xi ≥ 0
(23)
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These classification methods are directly applied in the scripts, not through any mapping function like this.

When numberMVtoCLASSmethod = 0: The identity is applied—see section 2.4.2.

When numberMVtoCLASSmethod = 1: The Fisher’s Linear Discriminant Analysis (LDA) is applied. This

method is based on the objective function

[at(x(1) − x(2))]2, (24)

implemented in our MATLAB function objectiveFunction (in fact, it implements −[at(x(1) − x(2))]2 so

that to use the MATLAB’s fmincon, which finds minima). This step is used by our method WI, proposed

in Alonso et al. (2012).

When numberMVtoCLASSmethod = 2: It is applied the Fisher’s Linear Discriminant Analysis with the usual

restrictions to determine a unique eigenvalue (from the infinite number of them):{
atWa = 1

a ≥ 0
, (25)

implemented in our MATLAB function constraintsFunction. This step is used by our method WD,

proposed also in Alonso et al. (2012).

When numberMVtoCLASSmethod = 3: The K-Nearest Neighbours (KNN ) approach is applied. Our code

calls the MATLAB’s function knnclassify with k given by the parameter numberNeighbours; the default

distance (Euclidean) and rule (majority rule with nearest tie-break) are considered. This function belongs

to the Bioinformatics Toolbox of MATLAB.

fromTStoFD

For each time series X, the methods in this function calculate a function χX . Concretely, when time series are

split into blocks the functions take the form χX = (F
(1)
X . . . F

(k)
X ), where F

(j)
X is a function constructed from

the j-th block of the series X (analogously for the samples of Y ). Let IT (tk) =
∑(T−1)

h=−(T−1) ρ̂h exp(−2πihtk)

be the periodogram of a time series, where ρ̂h is an estimator of the autocorrelation function of the series

(see, for example, Priestley [1981]). The following transformations are implemented by default.

When numberTStoFDmethod = 0: The identity is implemented—see section 2.4.2.

When numberTStoFDmethod = 1: The normalized integrated periodogram (default option) is constructed

FT (tk) =
k∑
i=1

IT (ti)/
m∑
i=1

IT (ti), (26)

This function is used by our methods DbC and DbC -α, introduced in Alonso et al. (2008).

When numberTStoFDmethod = 2: The nonnormalized integrated periodogram is constructed

FT (tk) =

k∑
i=1

IT (ti), (27)

This function is also used by our methods DbC and DbC -α.

When numberTStoFDmethod = 3: The periodogram is constructed

IT (tk), (28)

When numberTStoFDmethod = 4: The logperiodogram is constructed

LT (tk) = log(IT ). (29)
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Previous definitions have been given for a finite set of values, since this is the only case we can consider in

practice; in fact, choosing the set of Fourier frequencies provides among other advantages some simplification

in the algebra—see, for example, Priestley (1981). These definitions could have been given for λ ∈ [−π,+π].

We include here some explanations taken from Casado (2010): The normalized version of the cumulative

periodogram takes into account the shape of the curves more than the nonnormalized version, which also

considers the scale.

In our case, we propose using the normalized version when the graphs of the functions of the different

groups tend to intersect and there is no clear scale pattern, and using the nonnormalized one when the graphs

do not tend to intersect.

Some of the advantages of using the integrated periodogram are: it is a nondecreasing and quite smooth

curve; it has good asymptotic properties (for example, while the periodogram is an asymptotically unbiased

but inconsistent estimator of spectral density, the integrated periodogram is a consistent estimator of spectral

distribution); although, in practice, for stationary processes the integrated spectrum is usually estimated via

the estimation of the spectrum, from a theoretical point of view, spectral distribution always exists, whereas

spectral density exists only under absolutely continuous distributions; finally, from a theoretical point of view,

the integrated spectrum completely determines the stochastic processes.

Since the periodogram is defined only for stationary stochastic processes, to be able to classify nonsta-

tionary time series, we shall consider locally stationary series. With this assumption we can split them into

blocks, compute the integrated periodogram of each block and merge these periodograms into a final curve;

hence, we approximate the locally stationary processes by piecewise stationary processes.

The user can easily implement other functional data, as well as functional transformations of the previous

ones. There are some auxiliary functions in the same file: toIntegration applies the MATLAB’s function

cumsum to the rows of a matrix, which corresponds to integrate; toPeriodogram applies the MATLAB’s

function periodogram to the rows of a matrix, which corresponds to compute the periodogram; finally,

toNormalization divides each function (row) by its maximum, which is the last value when the function is

increasing (so are the integrated periodogram and cumsum).

funcAR2tv

This function generates the time-varying autoregressive stochastic processes of dataExercisesTS.

funcARMApq

This function generates the autoregressive moving average processes of dataExercisesTS. It can be used

to generate ARMA(p,q) processes outside the framework of this package.

functionRFC

This function applies the robust functional classification. It can be used with any functional data, outside

the framework of this package.
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Figure 3: Plot with the four possible kinds of peak
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generatePeak

This function adds to a function a deterministic peak centered in the middle value of the independent

variable t. Four possible types of smooth (differentiable) peak are possible—see figure 3.

When peakType = ‘Agnesi’: The Agnesi’s function is added

ad(t) =
d3

d2 + t2
(30)

When peakType = ‘Gauss’: The Gauss’s function is added

fσ(t) =
1√
2πσ

e−
t2

2σ2 (31)

When peakType = ‘Dirichlet’: The Dirichlet’s function is added

DN(t) =
sin((N + 1/2)t)

sin(t/2)
(32)

When peakType = ‘Fejer’: The Fejér’s function is added

FN(t) =
1

N

(
sin(Nt/2)

sin(t/2)

)2

. (33)

The parameter in the subindex is peakParam, and it allows the user to control the width of the peak.

To control the height of the peak, this function divides the function by its maximum (value at 0) and

multiplicates it by the parameter peakHeightCoeff. That is, if cpeakParam(t) represents any of the previous

expressions, this function generates

ppeakParam(t) =
cpeakParam(t− T/2)

cpeakParam(0)
· peakHeightCoeff. (34)

The final height of the peak is peakHeightCoeff. The user can obtain the “original curves,” but centered

in zero, by choosing peakHeightCoeff = cpeakParam(0). This kinds of peak—and the random functions

implemented in our models—may appear in areas like Physics or Engineering.
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plotDiscrimFunctions

This function plots the values of a univariate discriminant function y = atx =
∑p

i=1 aixi. The direction

determined by the vector of coefficients a = (a1, . . . , aq)
t is plotted, for the two- and three-variable cases,

by the function plotDiscrimVariables.

plotDiscrimVariables

This function plots the values of the univariate discriminant variables in the vector x = (x1, x2, . . . , xq)
t.

For time series, the unique variable is defined as described in the function fromFDtoCLASS. For functional

data, the variables are defined as described in the function fromFDtoMV. When a discriminant function

y(x) = atx =

q∑
i=1

aixi (35)

is built from the discriminant variables, the vector a = (a1, . . . , aq)
t of coefficients determines a direction

in Rq, and for two or three variables the code draws the version of this direction that contains the global

centroid of the data.

plotFunctions

This function plots functional data. The user can choose the number of functions of each group to be

plotted.

plotResults

For each (global) classification method, this function creates some figures with the results: error rates,

computational times, minimizing-power measures, coefficients, et cetera.

plotTimeSeries

This function plots time series. The user can choose the number of series of each group to be plotted.

referenceElement

This function includes methods to construct a representative element of a group from a sample. By default,

the usual mean is implemented (it can be applied to vectors, time series and functions). Additionally, if

atypical functional data are expected the user can select the α-trimmed mean—see López-Pintado and Romo

(2006)—although it is time-consuming. For example, in the simulation exercise 6, the use of the trimmed

mean reduces the variability of the extreme values of both the error rates and the coefficients, see figure 4;

with other data or models, the reference function can improve the results in a higher degree.

smoothingFD

This function includes methods to smooth functional data. A classical method based on cubic splines is

implemented. This method needs the function csaps of the Curve Fitting Toolbox of MATLAB.
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Figure 4: Results with the mean (left) and the trimmed mean (right)
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toLaTeXmatrix

This function generates (in the screen, but the user can call it while a plain text is being created by the

diary command of MATLAB) the LaTeX code of a generic table, so that to copy and paste it to a LaTeX

file. The user can customize this function.

trimFunction

For a sample of functions and a value of α (alpha, in the code), this function provides the α-trimmed

mean of the functions. It also provides the positions (rows) of the deepest functions. The user can edit

this function for the values of the depth to be provided. Besides, this function can be used outside the

framework of this package, for example to identify the deepest elements and to construct other robust

quantities, different to the mean. There is one auxiliary function in the same file, modBandDepth2, which

implements the modified band depth with j = 2—see López-Pintado and Romo (2006). Finally, the user

can implement other functional depth measures.

5 Parameters

5.1 Setting Parameters

dataFigures

Logical parameter to indicate whether to plot, during the first run, the crude data, their transformation and

the discriminant variables. See section 2.3. (Default value: dataFigures = true)

modelsJointly

Logical parameter to indicate whether to plot the series or the functions of the two groups separately or

jointly. (Default value: modelsJointly = false)

numElementsToPlot

Number to indicate the number of elements—series or functions—of each sample that will be included

in the figures; when plotting the discriminant variables, all the elements are considered. (Default value:

numElementsToPlot = ceil(m1*0.05), that is, 5% of m1)
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percentMargin

Number to control, in the figures, the distance from the most external values to the axes, e.g., as in

set(gca, ‘XLim’, [xMin-xRange*percentMargin/100 xMax+xRange*percentMargin/100])

(Default value: percentMargin = 5, that is, 5% of the range of values)

resultsFigures

Logical parameter to indicate whether to represent a boxplot with the misclassification error rates and, when

different parameter values have been tried, a figure with the evolution of the mean error rates as a function

of these values. (Default value: resultsFigures = true)

saveResults

Logical parameter to indicate whether to save in a file the main output information of the runs: error

rates, sample sizes, exercise, parameters, et cetera. The information in the file is sufficient for a future

analysis—textual and graphical—of the results. (Default value: saveResults = false)

verbose

Logical parameter to indicate whether to show some textual information during the computes. Some im-

portant information is given even if this parameter takes the value false—see section 2.9. (Default value:

verbose = true)

5.2 Statistical Parameters

alpha

Proportion of data that the functional depth leaves out to ignore the least representative elements. If few of

such elements are expected, a smaller value should be considered for a better use of the available samples.

(Default value: alpha = 0.2)

B

Number of runs in the outer or main loop. It must be neither too small nor too big—see section A.1.5.

(Default value: B = . In the scripts for real or new data, when leaveOneOut = true the value B = n1 +

n2 is set)

Bparam

Number of runs in the inner or nested loop, where the parameter value is optimized or the method is selected.

It must be neither too small nor too big—see section A.1.5. (Default value: Bparam = . In the scripts for

real or new data, when leaveOneOutParam = true the value Bparam = n1param + n2param is set)
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Figure 5: Error rates with diffOrders = [0 1 2 3 4 5] and [0 5], respectively (B = 500)
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contamination

Logical parameter to indicate whether to introduce contaminating elements during the generation of the

simulated data (they can also be directly introduced in the scripts). The code introduces the simulated

contaminants in the sample of group 1, but in real or new data they can belong to any sample. (Default

value: contamination = false)

contamType

Letter to indicate the type of contamination, previously implemented in the models, to be introduced during

the simulation of the data. In our case, this parameter can take the value ‘A’, ‘B’ or ‘C’. (Default value:

contamType = ‘’)

depthBasedRobustness

Logical parameter to indicate whether to apply the depth-based robustifying technique described in section

2.6.2. When activated, the robust method DbC -α is automatically disabledM; the user can modify this

characteristic of the code, as we have done for some simulation exercises of section 6. (Default value:

depthBasedRobustness = false)

diffOrders

Numerical vector to indicate the orders of the derivatives or differentials that are considered initially. The

crude functions—value 0—can be excluded, although in such a case functions differing in a constant would

be indistinguishable (this might be desirable sometimes). It holds that the number of discriminant variables

q is length(diffOrders). On the other hand, the highest possible order is technically determined by the

number of points T , although before this occurring the quality of the derivatives or differentials decreases

and the variables loose their discriminant power. Our methods are not affected by variables corresponding

to unnecessary derivatives or differentials—we may be working with noise sometimes—as they will not have

information useful to classify and the multivariate methods will discard them. This vector allows the user

to consider only some derivatives or differentials possibly nonconsecutive, which can reduce the computes

in some cases, e.g., for models with a tendency in the discriminant power of the successive derivatives or

differentials—see figure 5. On the convenience of considering many derivatives or differentials, figure 6 shows

the strong stability of our procedures while figure 7 gives support to the possible convenience. (Default

value: diffOrders = [])
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Figure 6: Boxplots when p = 21 (with B = 500)
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Figure 7: Two two-group classification problems with different performance when many derivatives or

differentials are considered (with B = 500)
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diffsMode

In our methods for classifying functional data, WI and WD, string parameter to choose between the deriva-

tives or the differentials in the i-th discriminant variable—see the function fromFDtoMV. This parameter can

take the value ‘derivatives’ or ‘differentials’. (Default value: diffsMode = ‘derivatives’)

discretenessMargin

Number to set the interval [minimum, minimum*(1+discretenessMargin)] in the two-step approaches of

sections 2.5.1 and 2.5.2. For example, the value 0.25 corresponds to an interval whose length is 25% of the

minimum. The user can change the margin or disable the two-step approach by setting discretenessMargin

= 0. (Default value: discretenessMargin = 0.25)

dyadicSplits

Number of dyadic splits to set the default value of numberBlocks. For example, if dyadicSplits = 3 then

numberBlocks = [1 2 4 8]. If the user chooses the values of numberBlocks, this parameter is ignored.

(Default value: dyadicSplits = 0)

leaveOneOut

Logical parameter to indicate, when m1 = 1 and m2 = 1, whether to apply exhaustive leave-one-out cross-

-validation; that is, whether each datum is subsequently left out instead of choosing a datum at random in

each run. (Default value: leaveOneOut = false)
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leaveOneOutParam

In the inner loop, logical parameter to indicate, when m1param = 1 and m2param = 1, whether to apply

exhaustive leave-one-out cross-validation. (Default value: leaveOneOutParam = false)

m1 and m2

Numbers with the testing sample sizes of the two groups in the outer loop. (Default values: m1 = and m2

= m1. In the scripts for real or new data, when leaveOneOut = true the values m1=1 and m2=1 are set.)

m1param and m2param

Numbers with the testing sample sizes of the two groups in the inner loop. (Default values: m1param =

and m2param = m1param. In the scripts for real or new data, when leaveOneOutParam = true the values

m1param=1 and m2param=1 are set.)

methodSelection

Logical parameter to indicate whether to select, in the inner loop, only the method and the parameter value

that best fit the data (in the sense of minimizing the estimated overall misclassification error rates) and there-

fore is expected to minimize the rate in the outer loop too. The user is given the minimizing-power measure

of the methods (see section 2.5.3 for details). When paramOptimization = true but methodSelection

= false, the user is given an estimation of the error rates as if the method had been optimized. When

methodSelection = true, the code sets paramOptimization = true. The method selection can be ap-

plied even if the parameter values vector has one value only. The code sets methodSelection = false

if there is only one global method. The selection process has been implemented in two slightly different

approaches—see section 2.5.2 for details. (Default value: methodSelection = false)

n1 and n2

Numbers with the training sample sizes of the two groups in the outer loop. In the inner loop of the scripts

for real or new data, if paramDataReuse = false and n1 = -1 = n2 the code splits the training samples

in two subsamples of the same size, with 50% of the data (if possible): one is the final testing sample and

the other is used for optimizing the parameter or selecting the method. (Default values: n1 = and n2 =

n1)

n1c

In the outer loop, number of contaminating series to be introduced in the final training sample of group 1

when simulating data. (Default value: n1c = ceil(n1*0.07), that is, 7% of n1)

n1cParam

In the inner loop, number of contaminating series to be introduced in the training sample of group 1 when

simulating data. (Default value: n1cParam = )
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Figure 8: Fewer values of numberBlocks can be considered in a second execution of the code
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n1param and n2param

In the inner loop, numbers with the training sample sizes of the two groups. (Default values: n1param =

and n2param = n1param)

namesFDtoCLASSmethods

Array with the names of the global functional data classification methods to be used in the figures. Its length

must be the number of rows of numbersFDtoCLASSmethods. (Default value: namesFDtoCLASSmethods =

{‘WI’, ‘WD’, ‘dKNN’})

namesTStoCLASSmethods

Array with the names of the global time series classification methods to be used in the figures. Its length

must be the number of rows of numbersTStoCLASSmethods. Method DbC -α is automatically disabled—from

numbersTStoCLASSmethods and this array—when depthBasedRobustness = true. The user can modify

this behaviour. (Default value: namesTStoCLASSmethods = {‘DbC’ ‘DbC-alpha’})

numberBlocks

Numerical vector with the number of blocks into which series will be subsequently split. The highest possible

number of blocks is technically determined by the length T , although before this occurring the quality of the

built functions decreases and the variables loose their discriminant power. The user can select the desired

initial values, for example numberBlocks = [4] or numberBlocks = [1 3 6]. This vector allows the user

to consider only some number of blocks possibly nonconsecutive, which can reduce the computes in some

cases. For stationary series, the value of numberBlocks must be 1; only the nonstationary series (piecewise

stationary series, for example) need splitting into blocks. If resultsFigures = true, the code plots the

mean estimated misclassification error rates as a function of numberBlocks. This allows the user to choose

visually the value that minimizes the error so as to execute the code again with a more appropriate range of

values for numberBlocks—see figure 8 in section 5.2. This minimizing value may depend on T—see section

A.1.4. (Default value: numberBlocks = [1 2 ... 2.̂dyadicSplits])

numberExercise

Number of the simulation exercise to be executed. Some default models are programmed, although the user

can create new cases in dataExercisesFD and dataExercisesTS. (Default value: numberExercise = )
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numberNeighbours

Number of neighbours in the k-nearest neighbours method. (Default value: numberNeighbours = 3)

numbersFDtoCLASSmethods

Matrix with the global functional data classification methods. In each row:

• The first number indicates the method of fromFDtoMV to be used

• The second number indicates the method of fromMVtoCLASS to be used

• The third number indicates the functional distance of distancesFD to be used

• The forth number indicates the functional reference of referenceElement to be used

Our procedures are implemented and called by default, but the users can call only one of them or other

methods—see section 2.4. Method WI is determined by 1 1 1 1, WD by 1 2 1 1 and dKNN by 1 3 1 1.

(Default value: numbersFDtoCLASSmethods = [1 1 1 1; 1 2 1 1; 1 3 1 1])

numbersTStoCLASSmethods

Matrix with the global time series classification methods. In each row:

• The first number indicates the method of fromTStoFD to be used

• The second number indicates the method of fromFDtoCLASS to be used

• The third number indicates the functional distance of distancesFD to be used

• The forth number indicates the functional reference of referenceElement to be used

Our procedures are implemented and called by default, but the users can call only one of them or other

methods—see section 2.4. Method DbC -α is automatically disabled—from this matrix and from the string

namesTStoCLASSmethods—when depthBasedRobustness = true. The user can modify this behaviour.

Method DbC is determined by 1 1 1 1 and DbC -α by 1 2 1 1. (Default value: numbersTStoCLASSmethods

= [1 1 1 1; 1 2 1 1])

paramDataReuse

Logical parameter to indicate whether to use the training data of the main loop for both optimizing the

parameter value (in the inner loop) and estimating the final error rates (in the outer loop). See sections 2.2

and 3. (Default value: paramDataReuse = false)

paramOptimization

Logical parameter to indicate whether to optimize, in the inner loop, the parameter value of each method

that minimizes the estimated overall error rate and therefore is expected to minimize the error rate in the

outer loop too. The user is given the minimizing-power measure of the values (see section 2.5.3 for details).

When disabled, the user is given an estimation of the error rates as if the parameter had been optimized.

This option is automatically disabled when length(numberBlocks)=1. When methodSelection = true,
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the code sets paramOptimization = true. The optimization process has been implemented in two slightly

different approaches—see section 2.5.1 for details. (Default value: paramOptimization = false)

paramVector1 and paramVector2

For simulated data, vectors with the parameters of the two models. (Default value: paramVector1 = []

and paramVector2 = [])

T

For functional data, number of equispaced points in [0,1] at which the functions are evaluated; the points

themselves are t = 0:1/(T-1):1 and the relation between T and t is important to compute the derivatives

and the differentials, since a technique for evenly spaced data is applied. For time series, length of the

processes and series; it is recommended to be a power of two (see section 2.8). (Default values: T = )

variaCutoff

Number to select the cutoff for the variability, when approximately constant variables are ignored before

applying the multivariate linear discriminant analysis in our algorithms. (Default value: variaCutoff =

sqrt(eps))

6 Examples

In Alonso et al. (2008, 2012) our proposals were applied to real data. In this section, several simulation

exercises are run, while others are suggested. The calls we present here will include the parameters that

are important or take a value different to that assigned by default. The output would be different for other

calls; and even slightly different numerical quantities would be obtained—because of the randomness of the

samples—for the calls we have used here. Besides, we have not included all the text and figures the code

generates.

It is worth highlighting that with these exercises we want both to show the output of the code and to

justify some concepts, while they are not a complete study. In some of them we are not directly interested

in the estimated overall misclassification error rates, so we have considered a moderate number of runs B

without caring whether the standard error of the estimation, measured as the sample standard deviation

divided by
√
B, has the same order of magnitude than the mean of the estimations, that is, the uncertainty

is similar to the estimation itself—see section A.1.5.

Since the functional classification methods WI, WD and dKNN are based on just the same values for

the discriminant variables, the option paramOptimization = true is interesting to select the differentiation

order that best classify the data but not to show some effects. Hence, for this task methods DbC and DbC -α

are more appropriate—on the one hand, they do not work with just the same discriminant variables and,

on the other hand, they are not so fast.
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6.1 Times Series

6.1.1 Simulation Exercise E1ts: Output of the Code. Methodology Effect

In this section, the output of SCRIPTsimulatedTS is shown for the models given by expressions 14 (both are

nowhere stationary processes): numberExercise = 3, paramVector1 = [0.8 0.5 0.81], paramVector2 =

[0.8 0.3 0.81], n1 = 50, n2 = n1, m1 = 75, m2 = m1, T = 512, contamination = true, contamType =

‘B’, n1c = 2, alpha = 0.2, B = 100, numbersTStoCLASSmethods = [1 1 1 1; 1 2 1 1],

namesTStoCLASSmethods = {‘DbC’, ‘DbC-alpha’}, numberBlocks = [1 2 4], paramOptimization = true,

n1param = 20, n2param = n1param, m1param = n1-n1param, m2param = n2-n2param, Bparam = 10,

n1cParam = 1, methodSelection = true.

Textual Information

When verbose = true, the following text is shown. During the runs

START

Generating the data...

Starting the iterations...

ITERATION: 1
...

ITERATION: 3

Optimization loop...

...end of the optimization loop

Information for method DbC-alpha

Error rates for group 1: 0.013333

Error rates for group 2: 0.013333

Overall error rates: 0.013333

Time spent for each value of the parameter values: 1.325 1.897 7.156

Joint time spent for all values of the parameter values: 10.378

ITERATION: 4
...

...ending the iterations

and, as a summary of the results, the code shows

MISCLASSIFICATION ERROR RATES (with both parameter optimization and method selection)

-> Mean of the estimated error rates for group 1:

0.0248

-> Standard deviation:

0.018669

-> Standard error:
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0.0019

-> Mean of the estimated error rates for group 2:

0.0204

-> Standard deviation:

0.01605

-> Standard error:

0.0016

-> Mean of the estimated overall error rates:

0.0226

-> Standard deviation:

0.011996

-> Standard error:

0.0012

METHOD: DbC

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0 0 0.01

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.58744 1.0898 2.1211

-> Mean joint time spent for all values of the parameter values:

3.7992

METHOD: DbC-alpha

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0 0.02 0.98

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

1.2999 1.922 6.0111

-> Mean joint time spent for all values of the parameter values:

9.2342

MINIMIZING-POWER OF THE METHODS

-> Mean:

0.01 0.99

Result figures...

STOP (And remember: ‘Everything and nothing is possimpible’, Barney Stinson)

From the previous information, we can see that 99 times out of the 100 the robust algorithm DbC -α has

been selected, which means that the contamination in the samples is not negligible. The algorithm DbC -α

has almost always provided the smallest error rates when series have been split in four blocks. To avoid

42



Figure 9: E1ts. Time series of the two populations
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Figure 10: E1ts. For four blocks: functional data and discriminant variable
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any possible beginner effect—see section A.2.4—we have provided the output of the third run rather than

the first. Finally, since B = 100 the order of magnitude of the standard error is one unit smaller than the

estimations of the mean error rates.

Graphical Information

When the inner loop is executed for optimizing the parameter or selecting the method, as different values

and methods can be chosen in different runs, the descriptive or prospective figures are not generated even

if dataFigures = true. Only the crude data are plotted (figure 9). Now we include as an example the

functional data and the discriminant variable that would be generated for each method and each number

of blocks (figure 10). The plots with the results (figures 11 and 12) are based on the B runs. During the

first run, result figures are also shown (we do not include them here) if dataFigures = true, which can

be used for prospective purpose before considering a big value for B. It can also be seen that the robust

method is automatically selected almost always. As expected, for these nowhere stationary processes, the

best results are obtained for four blocks. Besides, the histograms and the minimizing-power measure agree

to identify the variable with the highest discriminant power. The computational time depend nonlinearly

Figure 11: E1ts. Estimated misclassification error rates and minimizing-power measure of the methods
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Figure 12: E1ts. For method DbC : minimizing-power measure of the values and computational times
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on the parameter value (number of blocks, here).

Methodology Effect

As the models considered in this simulation exercise are nowhere stationary, on first thought it seems that

the estimated error rates should endlessly decrease with the number of blocks because of a better local

estimation of the everywhere-changing integrated periodogram; on second thought, however, we realize that

also decreases the number of points in each block and therefore the quantity of information, the quality of

the periodogram and the discriminant power of the variables (see section A.1.4). To notice this effect in

practice, we can repeat the exercise with higher values in numberBlocks or with a smaller value for T . When

numberBlocks = [1 2 4 8 16], the robust algorithm DbC -α always outperforms the algorithm DbC, but

splitting in eight or sixteen blocks does not provides better results, in general, as there are not enough points

in each block for the variables to have higher discriminant power:

MINIMIZING-POWER OF THE METHODS

-> Mean:

0 1

and

METHOD: DbC-alpha

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0 0.01 0.87 0.11 0.01

When the length, instead of the number of blocks, is changed, the results for numberBlocks = [1 2 4] and

T = 128 are

MINIMIZING-POWER OF THE METHODS

-> Mean:

0.08 0.92

and

METHOD: DbC-alpha

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0 0.46 0.54
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Figure 13: E2ts. Time series and functional data for exercise E2ts
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Because of the loss of points—and therefore quality—in each block, we can see that some times DbC

outperforms DbC -α even with the contamination, and almost half the times the latter algorithm chooses

two blocks rather than four.

6.1.2 Simulation Exercise E2ts: Types of Call

In this section, the output of SCRIPTnewTS is shown for the models given by expressions 13 (both are

two-piece piecewise stationary processes). With the code:

numberExercise = 2;

T = 256;

% Training samples

paramVector1 = [-0.1 +0.1]; paramVector2 = [+0.1 +0.1]

N1= 23; N2 = 25;

allGroupTS1 = dataExercisesTS(numberExercise,1,N1,T,paramVector1);

allGroupTS1(1:3,:) = dataExercisesTS(numberExercise,1,3,T,[+0.7 -0.2]);

allGroupTS2 = dataExercisesTS(numberExercise,2,N2,T,paramVector2);

allGroupTS2(1:3,:) = dataExercisesTS(numberExercise,2,3,T,[-0.7 +0.2]);

% New data (M elements of each group)

M = 4;

newDataTS = [dataExercisesTS(numberExercise,1,M,T,paramVector1);...

dataExercisesTS(numberExercise,2,M,T,paramVector2)];

we generate two training and one testing samples of pseudo-real time series. Both training samples have

three contaminating series. The time series and their functional data are shown in figure 13. In this situation,

we know in advance that the true labels of the eight testing elements are:

1 1 1 1 2 2 2 2

In our implementation, we have run the previous code only once so that to compare, for just the same data,

the labels obtained from different calls (and, as a particular case, for different splits of the samples). The

calls are summarized in table 1.
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Table 1: Types of call for simulation exercise E2ts

Call B paramOptimization methodSelection depthBasedRobustness

1 1 false false false

2 1 true false false

3 1 true true false

4 1 false false true

5 1 true true true

6 10 true false false

7 10 true true true

For these calls we can apply some reasoning, with the concepts of appendix A in mind, to deduce

the effects involved in the classification process determined by the call. Firstly, the atypical contaminating

elements introduce a (negative) training-sample weakening effect. Secondly, when the inner loop is executed,

training- and testing-sample-size effects as well as a run-averaging effect appear; besides, since more than

one testing element are being combined to estimate the misclassification error rates in the inner loop, an

implicit sample-averaging effect appears too. Thirdly, in the outer loop each new datum is independently

treated and, therefore, there is no sample-averaging effect, but there will be a run-averaging effect if several

runs are executed in this loop.

The same parameter values and methods will be applied to just the same data in all calls (for some we

have disabled temporarily the code that removes the robust algorithm when the depth-based robustifying

technique is enabled). That is, numberBlocks = [1 2 4], numbersTStoCLASSmethods = [1 1 1 1; 1 2

1 1], namesTStoCLASSmethods = {‘DbC’,‘DbC-alpha’}.

Type of Call 1

One run, without paramater optimization nor method selection, and without the robustifying technique;

that is, with B = 1, paramOptimization = false, methodSelection = false, depthBasedRobustness =

false. Then, the ouput is:

METHOD: DbC

CLASSIFICATION LABELS (without parameter optimization nor method selection)

-> Labels for the new data:

Parameter value p-th = 1

Run b = 1: 1 2 2 2 2 1 1 1

Parameter value p-th = 2

Run b = 1: 2 2 2 1 2 2 1 2

Parameter value p-th = 4

Run b = 1: 2 2 2 2 1 2 1 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:
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0.073 0.073 0.147

-> Mean joint time spent for all values of the parameter values:

0.293

METHOD: DbC-alpha

CLASSIFICATION LABELS (without parameter optimization nor method selection)

-> Labels for the new data:

Parameter value p-th = 1

Run b = 1: 2 1 1 2 2 2 2 2

Parameter value p-th = 2

Run b = 1: 1 1 1 2 2 2 2 2

Parameter value p-th = 4

Run b = 1: 2 1 1 2 2 2 2 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.138 0.176 0.329

-> Mean joint time spent for all values of the parameter values:

0.643

With this call, DbC has misclassified from 4 to 7 elements (results as bad as those of classifying at ran-

dom) while the robust DbC -α has misclassified 1 to 3 elements. We can see that DbC is affected by the

contaminating elements while DbC -α is not. Concretely, the former method suffers from a training-sample

weakening (switching, in fact) effect, as it tends to classify the first four elements in group 2 and the last

four ones in group 1. As expected (see the formulas of the models), both methods obtain the best results

when series are split in two blocks.

In comparing the labels of this call with those of the following ones, we expect: (i) the robust method

DbC -α to be automatically selected in call 3; (ii) the results of method DbC to improve when the depth-based

robustifying technique is applied in call 4.

Type of Call 2

One run, with parameter optimization only, and without the robustifying technique, that is, with: B = 1,

paramOptimization = true, paramDataReuse = false, m1param = 4, m2param = m1param,

leaveOneOutParam = false, Bparam = 10, methodSelection = false, depthBasedRobustness = false.

Then, the ouput is:

METHOD: DbC

CLASSIFICATION LABELS (the parameter value has been optimized)

-> Labels for the new data:

Run b = 1: 2 1 2 2 2 2 1 1

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0 0 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:
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0.094 0.114 0.193

-> Mean joint time spent for all values of the parameter values:

0.402

METHOD: DbC-alpha

CLASSIFICATION LABELS (the parameter value has been optimized)

-> Labels for the new data:

Run b = 1: 2 1 1 2 2 2 2 1

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0 0 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.134 0.163 0.305

-> Mean joint time spent for all values of the parameter values:

0.603

For this call DbC has still misclassified 5 elements, more than the expected 4 of classfying at random—

obviously, optimizing the parameter does not solve the training-sample weakening effect caused by the

contamination. Now, method DbC -α has misclassified 3 elements while in call 1 only one element were

misclassified for the best parameter value; on first thought this seems paradoxical, but on second thought

we realize that in chosing the best result in call 1 we are applying a “visual optimization,” while the automatic

parameter optimization is based on the run-averaging of classifiers that use fewer data and, therefore, may

provide worse results when in the inner loop the positive run-averaging effect does not compensate the

negative training- and testing-sample-size effects due to the splits.

Type of Call 3

One run, with both parameter and method optimizations, and without the robustifying technique, that is,

with: B = 1, paramOptimization = true, paramDataReuse = false, m1param = 4, m2param = m1param,

leaveOneOutParam = false, Bparam = 10, methodSelection = true, depthBasedRobustness = false.

Then, the ouput is:

CLASSIFICATION LABELS (both the parameter value and the method have been optimized)

-> Labels for the new data:

Run b = 1: 1 1 1 2 2 2 2 1

METHOD: DbC

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0 0 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.097 0.105 0.174

-> Mean joint time spent for all values of the parameter values:

0.376
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METHOD: DbC-alpha

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0 0 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.113 0.147 0.307

-> Mean joint time spent for all values of the parameter values:

0.569

MINIMIZING-POWER OF THE METHODS

-> Mean:

0 1

By looking at the minimizing-power measure of the methods, we know that DbC -α has been selected in the

unique run. Then, 2 elements have been misclassified after splitting series into four blocks—take a look at

the minimizing-power measure of the parameter values.

Type of Call 4

Although the code disables automatically the robust method DbC -α when depthBasedRobustness = true,

now we have maintained it both to compare the two methods and to see how they behave when the depth-

-based robustifying technique is applied. Then, this call is characterized by: one run, without parameter

optimization nor method selection, and with the robustifying technique, that is: B = 1, paramOptimization

= false, methodSelection = false, depthBasedRobustness = true, alpha = 0.2. Then, the ouput is:

METHOD: DbC

CLASSIFICATION LABELS (without parameter optimization nor method selection)

-> Labels for the new data:

Parameter value p-th = 1

Run b = 1: 2 1 1 2 2 2 2 2

Parameter value p-th = 2

Run b = 1: 1 1 1 2 2 2 2 2

Parameter value p-th = 4

Run b = 1: 2 1 1 2 2 2 2 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.161 0.249 0.353

-> Mean joint time spent for all values of the parameter values:

0.763

METHOD: DbC-alpha

CLASSIFICATION LABELS (without parameter optimization nor method selection)

-> Labels for the new data:

Parameter value p-th = 1

Run b = 1: 2 1 1 2 2 2 2 2
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Parameter value p-th = 2

Run b = 1: 1 1 1 2 2 2 2 2

Parameter value p-th = 4

Run b = 1: 2 1 1 2 2 2 2 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.183 0.347 0.45

-> Mean joint time spent for all values of the parameter values:

0.98

With the depth-based robustness, DbC has misclassified from 1 to 3 elements, and therefore now it is not

only faster than DbC -α but also as good classifier as it. Method DbC -α has neither improved nor worsened

its behaviour. Both methods obtain the best results when series are split in two blocks.

Type of Call 5

As we did for call 4, we have maintained DbC -α in the execution. Then, this call is characterized

by: one run, with both parameter and method optimizations, and with the robustifying technique, that

is: B = 1, paramOptimization = true, paramDataReuse = false, m1param = 4, m2param = m1param,

leaveOneOutParam = false, Bparam = 10, methodSelection = true, depthBasedRobustness = true,

alpha = 0.2. Then, the ouput is:

CLASSIFICATION LABELS (both the parameter value and the method have been optimized)

-> Labels for the new data:

Run b = 1: 2 1 1 1 2 2 2 2

METHOD: DbC

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0 0 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.177 0.21 0.385

-> Mean joint time spent for all values of the parameter values:

0.774

METHOD: DbC-alpha

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0 0 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.188 0.239 0.438

-> Mean joint time spent for all values of the parameter values:

0.865

MINIMIZING-POWER OF THE METHODS
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-> Mean: 1 0

By looking at the minimizing-power measure of the methods, we can see that DbC has been selected in

the unique run. We would realize that the two methods have misclassified the same number of elements—

although perhaps different elements—by looking at the minimizing-power measure. In case of tie, the labels

shown are those of the method called firstly. Since DbC has outperformed DbC -α (the minimizing-power

measure has not registered a tie through the values 0.5 0.5), it should also be selected when it is allocated

in the second position of the call. Indeed, we have repeated the call with the inverse order, that is, with

numbersTStoCLASSmethods = [1 2 1 1; 1 1 1 1];

namesTStoCLASSmethods = ‘DbC-alpha’, ‘DbC’;

and DbC has been selected again:

MINIMIZING-POWER OF THE METHODS

-> Mean: 0 1

Finally, the results of this call prove that in some situations DbC with the depth-based robustifying technique

can outperform the robust method DbC -α.

Type of Call 6

Ten runs, without parameter optimization nor method selection, and without the robustifying technique,

that is, with: B = 10, paramOptimization = true, paramDataReuse = false, m1param = 4, m2param =

m1param, leaveOneOutParam = false, Bparam = 10, methodSelection = false, depthBasedRobustness

= false. Then, the ouput is:

METHOD: DbC

CLASSIFICATION LABELS (the parameter value has been optimized)

-> Labels for the new data:

Run b = 1: 1 1 1 2 2 2 2 1

Run b = 2: 2 2 2 1 2 2 1 2

Run b = 3: 2 2 2 1 2 2 2 2

Run b = 4: 1 2 2 1 1 1 1 1

Run b = 5: 2 1 2 2 2 2 2 1

Run b = 6: 2 2 2 1 2 2 1 2

Run b = 7: 2 2 2 1 1 1 1 1

Run b = 8: 2 2 2 1 2 2 2 2

Run b = 9: 1 2 2 2 2 2 2 1

Run b = 10: 2 2 2 1 2 2 2 2

Majority vote (0 for ties), 2 2 2 1 2 2 2 0

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0.2 0.5 0.3

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:
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0.0639 0.0916 0.167

-> Mean joint time spent for all values of the parameter values:

0.3231

METHOD: DbC-alpha

CLASSIFICATION LABELS (the parameter value has been optimized)

-> Labels for the new data:

Run b = 1: 2 1 1 2 2 2 2 1

Run b = 2: 1 1 1 2 2 2 2 1

Run b = 3: 1 1 1 1 2 2 2 2

Run b = 4: 2 1 2 2 2 2 2 2

Run b = 5: 1 1 1 2 2 2 2 1

Run b = 6: 2 1 1 2 2 2 2 2

Run b = 7: 1 1 2 2 2 2 2 2

Run b = 8: 1 1 1 2 2 2 2 1

Run b = 9: 2 1 1 2 2 2 2 2

Run b = 10: 1 1 1 2 2 2 2 2

Majority vote (0 for ties), 1 1 1 2 2 2 2 2

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0.2 0.3 0.5

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.1144 0.1523 0.268

-> Mean joint time spent for all values of the parameter values:

0.5356

The training-sample weakening effect of the contaminats still affects DbC, and the run-averaging effect of

the majority-vote classifier cannot improve the results (averaging acts through the variance, not the bias).

Method DbC -α has misclassified 1 element, as it did in call 1 for the best parameter value. From all these

labels it seems that, if the call is repeated several times, the variability of the majority-vote classifier will

be smaller than that of the classification method itself, regardless the bias of the classification (see the

simulation exercise in section 6.1.4).

Type of Call 7

As we did for call 4, we have maintained DbC -α in the execution. Now the call is characterized by: ten

runs, with both parameter and method optimizations, and with the robustifying technique, that is: B = 10,

paramOptimization = true, paramDataReuse = false, m1param = 4, m2param = m1param,

leaveOneOutParam = false, Bparam = 10, methodSelection = true, depthBasedRobustness = true,

alpha = 0.2. Then, the ouput is:

CLASSIFICATION LABELS (both the parameter value and the method have been optimized)

-> Labels for the new data:

Run b = 1: 2 1 1 2 2 2 2 2
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Run b = 2: 2 1 1 2 2 2 2 2

Run b = 3: 1 1 1 2 2 2 2 2

Run b = 4: 1 1 1 2 2 2 2 1

Run b = 5: 2 1 1 2 2 2 2 1

Run b = 6: 1 1 1 2 2 1 1 1

Run b = 7: 1 1 1 2 2 2 2 1

Run b = 8: 2 1 1 2 2 2 2 2

Run b = 9: 1 1 1 2 2 2 2 1

Run b = 10: 1 1 1 2 2 2 2 1

Majority vote (0 for ties), 1 1 1 2 2 2 2 1

METHOD: DbC

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0.1 0.5 0.4

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.1527 0.1973 0.3958

-> Mean joint time spent for all values of the parameter values:

0.7471

METHOD: DbC-alpha

MINIMIZING-POWER OF THE PARAMETER VALUES

-> Mean:

0.3 0.5 0.2

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.183 0.2337 0.4478

-> Mean joint time spent for all values of the parameter values:

0.8657

MINIMIZING-POWER OF THE METHODS

-> Mean:

0.6 0.4

Now the depth-based robustifying technique has removed the training-sample weakening effect of the contam-

inating series, and, as a consequence, DbC has outperformed DbC -α sixty percent of times.

6.1.3 Simulation Exercise E3ts: Data-Quality Effects

In this section, the output of SCRIPTnewTS is shown for the models given by expressions 13 (both models are

two-piece piecewise stationary). With this exercise, we want to show the effects—positive or negative—that

some “contaminating” elements can introduce in the evaluation of classification methods. In section A.1.1

these effects are described and named training- and testing-sample strengthening and weakening effects. The

presence of the training-sample weakening effect were also noticed in the exercise in section 6.1.2.

The call has these characteristics: methods DbC and DbC -α, one run, without parameter optimiza-
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tion nor method selection, and without the robustifying technique: numbersTStoCLASSmethods = [1 1

1 1; 1 2 1 1], namesTStoCLASSmethods = {‘DbC’,‘DbC-alpha’}, numberBlocks = [1 2 4 8], B = 1,

paramOptimization = false, methodSelection = false, depthBasedRobustness = false.

Without Atypical Training Data

By executing the code

numberExercise = 2;

paramVector1 = [-0.1 0]; paramVector2 = [+0.1 0];

T = 64;

% Training samples

N1= 12; N2 = 13;

allGroupTS1 = dataExercisesTS(numberExercise,1,N1,T,paramVector1);

allGroupTS2 = dataExercisesTS(numberExercise,2,N2,T,paramVector2);

% New data (M elements of each group)

M = 3;

newDataTS = [dataExercisesTS(numberExercise,1,M,T,paramVector1);...

dataExercisesTS(numberExercise,2,M,T,paramVector2)];

we generate two training and one testing samples of pseudo-real time series. In this situation, we know in

advance that the true labels of the six testing elements are:

1 1 1 2 2 2.

As in example of section 6.1.2, for a better comparison of the results, we have run the previous code only

once so that to use the same time series. Our algorithms provide the labels

METHOD: DbC

CLASSIFICATION LABELS (without parameter optimization nor method selection)

-> Labels for the new data:

Parameter value p-th = 1

For b = 1: 1 1 1 2 1 1

Parameter value p-th = 2

For b = 1: 1 1 1 2 1 2

Parameter value p-th = 4

For b = 1: 1 1 1 1 2 1

Parameter value p-th = 8

For b = 1: 1 1 1 2 2 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.065 0.044 0.074 0.143

-> Mean joint time spent for all values of the parameter values:

0.326

METHOD: DbC-alpha

CLASSIFICATION LABELS (without parameter optimization nor method selection)
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-> Labels for the new data:

Parameter value p-th = 1

For b = 1: 1 1 1 2 1 1

Parameter value p-th = 2

For b = 1: 1 1 1 1 1 1

Parameter value p-th = 4

For b = 1: 1 1 1 1 1 1

Parameter value p-th = 8

For b = 1: 1 1 1 2 2 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.068 0.059 0.104 0.205

-> Mean joint time spent for all values of the parameter values:

0.436

If there are no atypical series, method DbC have slightly better behaviour than DbC -α—the former method

uses all the available data while the latter does not.

With Strengthening Atypical Training Data

By substituting the “contaminating” series

allGroupTS1(1:3,:) = dataExercisesTS(numberExercise,1,3,T,[-0.6 0]);

allGroupTS2(1:3,:) = dataExercisesTS(numberExercise,2,3,T,[+0.6 0]);

the output labels are

METHOD: DbC

CLASSIFICATION LABELS (without parameter optimization nor method selection)

-> Labels for the new data:

Parameter value p-th = 1

For b = 1: 1 1 1 2 1 1

Parameter value p-th = 2

For b = 1: 2 1 1 2 2 2

Parameter value p-th = 4

For b = 1: 2 1 1 2 2 1

Parameter value p-th = 8

For b = 1: 2 1 1 2 2 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.064 0.043 0.075 0.143

-> Mean joint time spent for all values of the parameter values:

0.325

METHOD: DbC-alpha

CLASSIFICATION LABELS (without parameter optimization nor method selection)
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-> Labels for the new data:

Parameter value p-th = 1

For b = 1: 1 1 1 1 1 1

Parameter value p-th = 2

For b = 1: 1 1 1 2 2 2

Parameter value p-th = 4

For b = 1: 2 1 1 2 2 1

Parameter value p-th = 8

For b = 1: 2 1 1 2 2 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.068 0.059 0.107 0.199

-> Mean joint time spent for all values of the parameter values:

0.433

Because of the training strengthening effect introduced by elements that separate the reference elements of

the two groups, now DbC and DbC -α have misclassified fewer elements.

With Weakening Atypical Training Data

With the “contaminating” series

allGroupTS1(1:3,:) = dataExercisesTS(numberExercise,1,3,T,[+0.6 0]);

allGroupTS2(1:3,:) = dataExercisesTS(numberExercise,2,3,T,[-0.6 0]);

the output labels are

METHOD: DbC

CLASSIFICATION LABELS (without parameter optimization nor method selection)

-> Labels for the new data:

Parameter value p-th = 1

For b = 1: 2 2 2 1 2 2

Parameter value p-th = 2

For b = 1: 1 2 2 1 1 1

Parameter value p-th = 4

For b = 1: 2 2 2 1 1 1

Parameter value p-th = 8

For b = 1: 1 2 2 1 2 2

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.066 0.044 0.074 0.145

-> Mean joint time spent for all values of the parameter values:

0.329

METHOD: DbC-alpha

CLASSIFICATION LABELS (without parameter optimization nor method selection)
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-> Labels for the new data:

Parameter value p-th = 1

For b = 1: 2 2 2 1 2 2

Parameter value p-th = 2

For b = 1: 1 2 2 1 1 1

Parameter value p-th = 4

For b = 1: 2 2 1 1 1 1

Parameter value p-th = 8

For b = 1: 2 2 2 1 2 1

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.069 0.059 0.107 0.223

-> Mean joint time spent for all values of the parameter values:

0.458

Now, the training weakening effect appears with data that make the reference elements of the two groups

closer. Now DbC and DbC -α have misclassified almost all the elements—the criterion has even been

switched.

With Strengthening Atypical Testing Data

If we generate new contamination-free training samples but we modify the new data so that to make them

easier to classify, with

% New data (M elements of each group)

M = 3;

paramVector1 = [-0.5 0]; paramVector2 = [+0.5 0];

newDataTS = [dataExercisesTS(numberExercise,1,M,T,paramVector1);...

dataExercisesTS(numberExercise,2,M,T,paramVector2)];

both methods classify the six testing elements correctly for any parameter value. These elements, which

may be legitimately generated by the underlying process, would introduce a perturbance in the estimation

of the misclassification error rates.

With Weakening Atypical Testing Data

Finally, with contamination-free training samples and uncorrectly-labelled new data (an extreme of “difficult

to classify”),

% New data (M elements of each group)

M = 3;

paramVector1 = [+0.7 0]; paramVector2 = [-0.7 0];

newDataTS = [dataExercisesTS(numberExercise,1,M,T,paramVector1);...

dataExercisesTS(numberExercise,2,M,T,paramVector2)];

both methods misclassify the six testing elements for any parameter value. Again, these legitimate, improb-

able elements would introduce a perturbance in the estimation of the misclassification error rates.
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6.1.4 Simulation Exercise E4ts: Run-Averaging Effect

To show the run-averaging effect described in section 2.6.3, on a copy of SCRIPTnewTS we have run its code

H = 500 times. After disabling the figures (too many would be generated), we have written few lines of

code to register the labels of both the classification method DbC and the majority-vote classifier. For a fair

comparison, in each repetition only DbC ’s labels of the first run (b = 1) are considered for the estimation.

It is worth noticing that, in each repetition, the previous single instance of the classifier does not depend

on B, while the majority-vote classifier does. Finally, the mean square error of the two classifiers have been

calculated as the following formulas tell (there will be M testing data ei)

ˆMSE(c1(e)) =
1

M

M∑
i=1

ˆMSE(c1(ei))

=
1

M

M∑
i=1

[ 1

H

H∑
h=1

c1,h(ei)− gei

]2
+

1

H − 1

H∑
h=1

[
c1,h(ei)−

1

H

H∑
k=1

c
(1)
k (ei)

]2
=

1

M

M∑
i=1

[
1

H

H∑
h=1

c1,h(ei)− gei

]2
+

1

M

1

H − 1

M∑
i=1

H∑
h=1

[
c1,h(ei)−

1

H

H∑
k=1

c
(1)
k (ei)

]2
(36)

the sample mean has mean square error

ˆMSE(C(e)) =
1

M

M∑
j=1

ˆMSE(C(ei))

=
1

M

M∑
j=1

[ 1

H

H∑
h=1

Ch(ei)− gei

]2
+

1
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1

H
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]2
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1

M
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1

H
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Ch(ei)− gei

]2
+

1

M

1

H − 1

M∑
j=1

H∑
h=1

[
Ch(ei)−

1

H

H∑
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Ck(ei)

]2
(37)

The training and new data have been generated with the code

numberExercise = 3;

paramVector1 = [0.8 0.5 0.81]; paramVector2 = [0.8 0.3 0.81];

T = 64;

% Training samples

N1= 28; N2 = 28;

allGroupTS1 = dataExercisesTS(numberExercise,1,N1,T,paramVector1);

allGroupTS2 = dataExercisesTS(numberExercise,2,N2,T,paramVector2);

% New data (M elements of each group)

M = 3;

newDataTS = [dataExercisesTS(numberExercise,1,M,T,paramVector1);...

dataExercisesTS(numberExercise,2,M,T,paramVector2)];

trueLabels = [1 1 1 2 2 2];

The call is determined by numbersTStoCLASSmethods = [1 1 1 1], namesTStoCLASSmethods = ‘DbC’,

numberBlocks = [1 2], paramOptimization = true, paramDataReuse = false, n1 = -1, n2 = -1, m1param

= 10, m2param = m1param, leaveOneOutParam = false, Bparam = 10, methodSelection = false, and

depthBasedRobustness = false. Three values have been considered for B.
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With B = 10

For the first run of all repetitions, the estimated mean square error of c1 = DbC is

0.1954 + 0.0681 = 0.2635

while for the 100 repetitions, the estimated mean square error of the majority-vote classifier C (based on

the B runs of DbC ) is

0.1681 + 0.1031 = 0.2712

For these models and call, when B = 10 both have similar mean square error, although C has slightly

smaller bias and salightly higher variance.

With B = 25

For this number of runs, the estimated mean square error of c1 = DbC is

0.2931 + 0.1331 = 0.4262

and the estimated mean square error of the majority-vote classifier C is

0.3337 + 0.0093 = 0.3430

Now, when B = 25 the classifier C has slightly higher bias but smaller mean square error and quite smaller

variance.

With B = 50

In 50 runs the estimated mean square error of c1 = DbC is

0.2945 + 0.1454 = 0.4399

while for the majority-vote classifier C is

0.3842 + 0.0960 = 0.4802

When B = 50, both classifiers provide slightly worse results. The majority-vote classifier C has still smaller

variance than c1 but higher bias and mean square error.

With B = 100

Finally, in 100 runs the estimated mean square error of c1 = DbC is

0.2901 + 0.1659 = 0.4560

while for the majority-vote classifier C is

0.4537 + 0.0331 = 0.4868

For this value of B, both classifiers provide similar mean square error, though C has quite higher bias than

c1 but also quite smaller variance (due to the run-averaging effect).
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6.1.5 Simulation Exercise E5ts: Discreteness Effect

On a copy of SCRIPTrealTS, we have modified the code so that to register also the minimizing-power of

each classification method in the inner loop (by default it is measured only in the outer loop). In case of

ties, all the minimizing methods are registered. Then, we will call two methods when the discreteness effect

of section A.1.2 is notoriously present; in this situation, the two methods should be selected for the outer

loop even if it is clear than one would be better than the other in a “reasonable framework.” Finally, we

will show that: (1) the effect is smaller for either higher testing sample sizes or higher number or runs, and

(2) that the two-step approach is capable of creating ties to give a second chance to some methods, that is,

that the approach would work in practice. By using the code

numberExercise = 2;

paramVector1 = [-0.1 0]; paramVector2 = [+0.1 +0.1];

N1= 75; N2 = 75; T = 512;

allGroupTS1 = dataExercisesTS(numberExercise,1,N1,T,paramVector1);

allGroupTS2 = dataExercisesTS(numberExercise,2,N2,T,paramVector2);

we generate two samples of pseudo-real data (pure ARMA processes, here). Now we will consider the call

m1 = 50; m2 = m1;

B = 100;

numbersTStoCLASSmethods = [1 1 1 1; 1 2 1 1];

namesTStoCLASSmethods = ‘DbC’, ‘DbC-alpha’;

numberBlocks = [1 2]

paramOptimization = true;

paramDataReuse = false;

n1 = -1;

n2 = -1;

methodSelection = true;

with which the final testing samples will have m1 = 15 = m2 series, the final training samples will have

n1 = 20/2 = n2 series, and the 10 series of each population will be used to select the method.

The “natural importance” of the methods in minimizing the error rates can be evaluated when both

methods are always considered for the other roop. By using the code

m1param = 2; m2param = 2;

Bparam = 2;

discretenessMargin = 0;

we cause a situation where ties are probable due to the discreteness effect and the two-step method-selection

approach is disabled. Two possible contiguous values of the estimation are separated by a distance 1/(2(2 +

2)) = 0.125. The minimizing-power measurements of the methods at the end of the inner and the outer

loops are, respectively:

0.5000 0.5000

and
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0.7000 0.3000

Thus, we can see that for these models and call, the first method outperforms the second

Statistical Weakening of the Effect

With the call

m1param = 8; m2param = 8;

Bparam = 2;

discretenessMargin = 0;

8 elements are used for training, instead of 2. Two possible contiguous values of the estimation are separated

by a distance 1/(2(8 + 8)) = 0.03125. Now the minimizing-power measurement is

0.6100 0.3900

We can see that the discreteness effect causes a smaller proportion of ties in the inner loop.

On the other hand, with

m1param = 2; m2param = 2;

Bparam = 10;

discretenessMargin = 0;

the number of runs is increased, instead of the testing-sample sizes. Now, two possible contiguous values of

the estimation are separated by a distance 1/(8(2 + 2)) = 0.03125. As a consequence,

0.5900 0.4100

A similar variation in the minimizing-power, measured in the inner loop, has been obtained—notice that

the step between possible estimated values is, for these sample sizes and number or runs, equal to that of

the previous call.

Methodological Creation of Pseudoties

Although it would be better to evaluate the two-step approach with a real problem, we used this simulation

exercise to show that, once ties are little probable, the approach creates new pseudoties. Firstly, we increase

both the testing sample sizes and the number of runs

m1param = 8; m2param = 8;

Bparam = 8;

discretenessMargin = 0;

and the minimizing-power measurement is

0.6900 0.3100

For this call, two possible contiguous values of the estimation are separated by a distance 1/(8(8 + 8)) =

0, 0078125, and we can see that the “natural” minimizing-power measurements of the outer loop are also

obtained in the inner loop.

Finally, by enabling the two-step approach with
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discretenessMargin = 2;

the minimizing-power measurement is

0.5000 0.5000

That means that the margin of error is capable of creating the necessary pseudoties so that to weaken the

discreteness effect in the inner loop.

6.1.6 Simulation Exercise E6ts: Inherent Effect

In this section, the output of SCRIPTapplicationTS is shown for the models given by expressions 13. The

aim of this simulation exercise is to show an example of the inherent effect defined in section A.2.4. An

additional while is necessary to do some calculations the first time, with respect to the following ones. As

a tricky solution, some calculations are done one more time than necessary:

computationalTimesTStoFD = zeros(size(numbersTStoCLASSmethods,1),length(paramValues));

for p = 1:length(paramValues)

infoTStoFDmethod = paramValues(p);

for i1 = 1:size(numbersTStoCLASSmethods,1)

if isequal(i1,1) ||...

(i1>1 && ∼any(numbersTStoCLASSmethods(i1,1)==numbersTStoCLASSmethods(1:(i1-1),1)))

% The following lines are a trick

if isequal(p,1)

eval(... CodeHere ...)

end

startClock = clock;

eval(... CodeHere ...)

etime(clock,startClock);

else % To use previous calculations, since i1-1, i1-2,... were also considered
...

end

end

end

As an example, with this code the computational time of a call were

METHOD: DbC

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.053 0.036 0.062 0.119

-> Mean joint time spent for all values of the parameter values:

0.27

METHOD: DbC-alpha

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:
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0.048 0.043 0.079 0.16

-> Mean joint time spent for all values of the parameter values:

0.33

while without the three lines of the solution, a call to the code provided

METHOD: DbC

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.381 0.035 0.06 0.115

-> Mean joint time spent for all values of the parameter values:

0.591

METHOD: DbC-alpha

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.375 0.042 0.075 0.141

-> Mean joint time spent for all values of the parameter values:

0.33

Watch the time of the first parameter value. Since our code allows some methods to use calculations

previously done by another method and to register its computational time, the perturbation propagates to

them.

I have verified this effect in different computers, operating systems and versions of MATLAB. A simple

call like eval([‘litter=0; clear litter’]), instead of the implemented trick, does not solve the problem.

This effect is not related to either the MATLAB’s function eval or the type or datum.

As the effect is negligible for many runs or big data, the user should remove the trick especially in the

latter case.

6.1.7 Suggested Simulation Exercises

Simulation Exercise 1ts

numberExercise = 1, paramVector1 = [0 +0.05], paramVector2 = [0 -0.05], n1 = 10, n2 = n1, m1

= 20, m2 = m1, T = 1024, dyadicSplits = 0, numberBlocks = 2.̂(0:dyadicSplits), contamination =

false, B = 250.

Simulation Exercise 2ts

numberExercise = 1, paramVector1 = [0.5 +0.1], paramVector2 = [0.5 -0.1], n1 = 25, n2 = n1, m1

= 75, m2 = m1, T = 1024, dyadicSplits = 0, numberBlocks = 2.̂(0:dyadicSplits), contamination =

true, contamType = ‘B’, n1c = 4, alpha = 0.2, B = 50.

Simulation Exercise 3ts

numberExercise = 2, paramVector1 = [-0.1 0], paramVector2 = [+0.1 0.3], n1 = 14, n2 = 16, m1

= 39, m2 = 37, T = 2048, dyadicSplits = 2, numberBlocks = 2.̂(0:dyadicSplits), contamination =

true, contamType = ‘C’, n1c = 1, alpha = 0.2, B = 75.
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Simulation Exercise 4ts

numberExercise = 3, paramVector1 = [0.8 0.5 0.81], paramVector2 = [0.8 0.3 0.81], n1 = 30, n2

= n1, m1 = 70, m2 = m1, T = 512, numberBlocks = [2 4 6 8], contamination = true, contamType =

‘B’, n1c = 5, alpha = 0.2, B = 50.

6.2 Functional Data

6.2.1 Simulation Exercise E1fd: Output of the Code

In this section, the output of SCRIPTsimulatedFD is shown for: numberExercise = 7, paramVector1 =

[1/2 100 300], paramVector2 = [1/300 100 300], n1 = 50, n2 = n1, m1 = 75, m2 = m1, T = 300, B =

200, numbersFDtoCLASSmethods = [1 1 1 1; 1 2 1 1; 1 3 1 1], diffOrders = [0 1 2], diffsMode

= ‘differentials’, namesFDtoCLASSmethods = {‘WI’, ‘WD’, ‘dKNN’},
paramOptimization = false, methodSelection = false. The models are given by expressions 9.

Textual Information

When verbose = true, the following text is shown. During the runs

START

Generating the data...

Starting the iterations...

ITERATION: 1
...

ITERATION: 3

Information for method WI

Variables with null variability in the whole data set: None

Discriminant variables available: x1 x2 x3

Discriminant variables considered: x1 x2 x3

Information for method WD
...

Information for method WI

Error rates for group 1: 0.12 0.26667 0.37333

Error rates for group 2: 0.13333 0.22667 0.33333

Overall error rates: 0.12667 0.24667 0.35333

Time spent for each value of the parameter values: 0 0 0

Joint time spent for all values of the parameter values: 0

Multivariate method

Error rates for group 1: 0.14667

Error rates for group 2: 0.13333

Overall error rates: 0.14
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Coefficients of the parameter values: 9.0255 0.11274 1.9241

Time spent with the vector of variables: 0

Information for method WD
...

ITERATION: 4
...

...ending the iterations

and, as a summary of the results, the code shows

METHOD: WI

MISCLASSIFICATION ERROR RATES (without parameter optimization nor method selection)

-> Mean of the estimated error rates for group 1:

0.1364 0.24907 0.35067

-> Standard deviation:

0.045249 0.057639 0.063526

-> Standard error:

0.0032 0.0041 0.0045

-> Mean of the estimated error rates for group 2:

0.13007 0.23427 0.33933

-> Standard deviation:

0.045304 0.060524 0.06915

-> Standard error:

0.0032 0.0043 0.0049

-> Mean of the estimated overall error rates:

0.13323 0.24167 0.345

-> Standard deviation:

0.028366 0.035149 0.038544

-> Standard error:

0.0020 0.0025 0.0027

MISCLASSIFICATION ERROR RATES (as if parameter optimization had been applied)

-> Mean of the estimated error rates for group 1:

0.1364

-> Standard deviation:

0.045249

-> Standard error:

0.0032

-> Mean of the estimated error rates for group 2:

0.13007

-> Standard deviation:

0.045304

-> Standard error:
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0.0032

-> Mean of the estimated overall error rates:

0.13323

-> Standard deviation:

0.028366

-> Standard error:

0.0020

COMPUTATIONAL TIMES

-> Mean time spent for each value of the parameter values:

0.00971 0.00635 0.00663

-> Mean joint time spent for all values of the parameter values:

0.02285

MULTIVARIATE METHOD

-> Mean of the estimated error rate for group 1:

0.15773

-> Standard deviation:

0.056081

-> Standard error:

0.0040

-> Mean of the estimated error rate for group 2:

0.15273

-> Standard deviation:

0.051412

-> Standard error:

0.0036

-> Mean of the estimated overall error rates:

0.15523

-> Standard deviation:

0.033001

-> Standard error:

0.0023

-> Mean coefficients of the parameter values:

7.0638 0.44181 3.046

-> Mean joint time spent for all values of the parameter values:

0.03376

METHOD: WD
...

MISCLASSIFICATION ERROR RATES (as if both parameter optimization and method selection...)

-> Estimation of the mean of the estimated error rates for group 1:

0.1364

-> Standard deviation:

0.045249
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-> Standard error:

0.0032

-> Estimation of the mean of the estimated error rates for group 2:

0.13007

-> Standard deviation:

0.045304

-> Standard error:

0.0032

-> Estimation of the mean of the estimated overall error rates:

0.13323

-> Standard deviation:

0.028366

-> Standard error:

0.0020

Result figures...

STOP (And remember: ‘Everything and nothing is possimpible’, Barney Stinson)

To avoid any possible beginner effect—see section A.2.4—we provide the output of the third run rather

than the first. Since B = 200 the order of magnitude of the standard error is one unit smaller than the

estimations of the mean error rates.

Graphical Information

When dataFigures = true and paramOptimization = false, for each global method the plots in figure

14 are generated from during the first run (we include here those of method WI only). The figures showing

the results, 17 and 18, are based on the B runs. During the first run, result figures similar to these are also

generated (we do not include them here). Figures can be used for prospective purpose before considering

a big value for B. In this exercise, the histograms and the coefficients agree to identify the discriminant

variable with the highest discriminant power. As expected, the computational time does not depend on the

value of the parameter (order of the differentiation, here).

6.2.2 Suggested Simulation Exercises

Simulation Exercise 1fd

numberExercise = 1, paramVector1 = [1 1], paramVector2 = [1 1], n1 = 100, n2 = n1, m1 = 100,

m2 = m1, T = 30, B = 1000, diffOrders = [0:2], diffsMode = ‘derivatives’.

Simulation Exercise 2fd

numberExercise = 2, paramVector1 = [1 1], paramVector2 = [1 1], n1 = 100, n2 = n1, m1 = 100,

m2 = m1, T = 30, B = 1000, diffOrders = [0:2], diffsMode = ‘derivatives’.
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Figure 14: E1fd. Some crude functions and their differential up to the second order (on the left), and the

discriminant variable for all the functions (on the right)
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Figure 15: E1fd. Scatter plot of the three variables and three-dimensional representation
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Figure 16: E1fd. Discriminant function (for all the functions)
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Figure 17: E1fd. Estimated misclassification error rates and evolution of the mean
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Figure 18: E1fd. Coefficients of the multivariate method and computational times
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Simulation Exercise 3fd

numberExercise = 3, paramVector1 = [1 1 5/4], paramVector2 = [1 1], n1 = 100, n2 = n1, m1 =

100, m2 = m1, T = 30, B = 1000, diffOrders = [0:2], diffsMode = ‘derivatives’.

Simulation Exercise 4fd

numberExercise = 4, paramVector1 = [4 1], paramVector2 = [4.5 1], n1 = 100, n2 = n1, m1 = 100,

m2 = m1, T = 30, B = 1000, diffOrders = [0:3], diffsMode = ‘derivatives’.

Simulation Exercise 5fd

numberExercise = 5, paramVector1 = [1/20], paramVector2 = [1/20], n1 = 100, n2 = n1, m1 = 100,

m2 = m1, T = 200, B = 1000, diffOrders = [0:3], diffsMode = ‘derivatives’.

Simulation Exercise 6fd

numberExercise = 6, paramVector1 = [4 1 1/100], paramVector2 = [4 1], n1 = 100, n2 = n1, m1 =

100, m2 = m1, T = 300, B = 500, diffOrders = 0:11, diffsMode = ‘differentials’.

Simulation Exercise 7fd

numberExercise = 7, paramVector1 = [1/2 100 300], paramVector2 = [1/300 100 300], n1 = 100,

n2 = n1, m1 = 100, m2 = m1, T = 300, B = 500, diffOrders = [0 1 3 5], diffsMode = ‘differentials’.

A Effects

In this appendix we give theoretical explanations on some easy-to-identify perturbations that may affect

the classification process and the computational effort. First, we devote a subsection to those due to the

quality of the data, the quantity of data, the classification method itself, and the scheme where the whole

process is implemented. In a second subsection, we include some time effects due to the quantity of data,

the possible auxiliary techniques the method needs, the order in which the methods are called in the scheme,

and the software and hardware of the computer on which the code is executed. I have named all the effects

introduced here except the overfitting effect—the only one I knew.
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A.1 On the Classification

A.1.1 Quality of the Data

Before considering the quantity of data in the samples, it is necessary to guarantee a “reasonable” quality.

Some elements should perhaps be removed or weighted.

Training Samples: Strenghening and Weakening Effects

For correctly-labeled data, a classification method is useless if it provides results worse than those of allo-

cating the elements at random (for two groups this happens when the error rate is larger than 0.5). Never-

theless, even excellent classification methods may behave worse than that if the training elements are incor-

rectly labelled or little representative. It is easy to imagine atypical elements in both training samples such

that the rule is affected by a training weakening effect and therefore tends to misclassify most of the testing

elements; the criterion can even be switched. Alternatively, a training strengthening effect appears when

the atypical elements benefit the classification rule. These effects can be noticed by comparing the output

of the calls of the simulation exercise in section 6.1.3. The weakening—even switching—effect can also be

noticed by comparing the output of the calls 1 and 4 of the simulation exercise in section 6.1.2.

Testing Samples: Strenghening and Weakening Effects

Equivalently, we can talk about the difficulty of some elements to be classified. It is easy to imagine elements

that are on “the worse side” of the representative element of their class. With many of these elements in

the testing samples, the process will be affected by a testing weakening effect. Alternatively, a testing

strengthening effect will appear when there are many elements on “the better side” of the representative

element of their class. These effects can spoil the estimation of either the error rates or the labels. These

effects can be noticed in practice by comparing the output of the three calls of the simulation exercise in

section 6.1.3.

Truncated Distributions

The two previous sections highlight, on the one hand, the importance of the quality of the samples, not of

the classification methods themselves; and, on the other hand, the convenience of evaluating the methods

not only with several pairs of population models but also after removing the least representative data. Our

depth-based robustifying technique, described in 2.6.2, can be used to avoid these effects. The technique

leaves out the elements with smallest depth from both the training and the testing samples of the inner loop

and from the training samples of the outer loop, while all the final testing elements are classified.

Theoretically, the “natural” proportion of little representative elements in both the training and the

testing samples should be that determined by the tails of the probability distribution of the underlying

stochastic models. Since obtaining these elements is little probable, leaving them out can introduce several

advantages. To begin with, ignoring these elements would prevent us from working with little representa-

tive, probable samples. These samples are legitimate from a probabilistic point of view, but not the best

framework to train and test procedures. Besides, in filtering the samples outliers and atypical data would be

removed at the same time. To end with, the attention is focused on the most representative elements, the
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kind of element with which the method has most times to deal. In short, the behaviour of the classification

method can improve.

The described in the previous paragraph should not be seen as an ad-hoc manipulation of the samples

but as being working with the truncated distribution of the underlying models. These distributions are

widely used and has great theoretical importance in Probability Theory and Statistics. On the one hand, a

disadvantage to working with them is that it is necessary to determine whether a datum is representative

or not, task for which the concept of depth measure can play a crucial role. Our depth-based robustifying

approach can be thought of as a way of working with the truncated probability distributions of the underlying

stochastic models.

A.1.2 Quantity of Data

Once the data are supposed to have a “reasonable” quality, caring about the quantity of data makes sense.

Training Samples: Under- and Overfitting Effects

These effects are caused by the number of training elements. For good statistical inference procedures, the

amount of data is directly related to the quality, and the training-sample-size effect is usually nonlinear,

that is, the quality varies nonlinearly with sample size.

When there are few training elements, it is not possible to carry out a reasonable classification process,

regardless the method and the quality of the data. This underfitting effect can be noticed in practice by

running the same simulation exercise twice: with few and many training data.

Nevertheless, perhaps the most important effect related to the training process is the well-known over-

fitting effect. It appears when the same few data are used so intensively that the method behave poorly

when it is applied to new data.

Testing Samples: Discreteness Effect

The amount of testing data is also related to the quality of the estimations of either the error rates and the

labels. This can be called testing-sample-size effect.

If there are few testing data, the discretization of the possible estimations of the error rate is poor:

ĉ =
k

m1 +m2
(38)

with k ∈ {0, 1, ...,m1 + m2} being the number of misclassified elements. The step between contiguous

possible values is 1/(m1 +m2). The discreteness can be noticed by running a simulation exercises with few

testing sample sizes and runs. As a consequence, when searching the optimum parameter value or method,

the decision-making process may be affected by a “dubiously situation” among several parameter values or

methods that tend to provide the same or close estimation of the error rates—this can be called discreteness

effect.

However, the average estimation of B runs is usually considered:

Ĉ =
1

B

B∑
i=1

ĉi =
1

B

B∑
i=1

ki
mi,1 +mi,2

(39)

with ki ∈ {0, 1, ...,mi,1+mi,2}. Hence, now the step between contiguous possible values is 1/(B ·(m1+m2)).

This run-averaging weakens the effect, although it may still persit for few runs. Them, if possible we
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should avoid small values for the testing sample sizes, especially for few runs; otherwise the effect, which

may happen in both the inner and the outer loops, can spoil the procedure. This effect is related to the

estimation of the error rates, so we need not care about the sizes of the final testing samples in the scripts

for new data. To prevent this effect, our implementation includes specific code.

On the one hand, for the inner or nested loop to be applicable with small data sets, the training data of

the outer cross-validation loop can optionally be used for both optimizing the parameter and estimating the

final misclassification error rates (by setting paramDataReuse = true). Nevertheless, a too intensive reuse

of the data can cause overfitting—see the training-sample-size effects of this section.

On the other hand, in the inner loop of the two first schemes of figure 1, section 2.2, we have implemented

a specific approach to postpone the decision and select the parameter value or the classification method

in the main loop. Concretely, for both parameter optimization and method selection a margin over the

minimum is considered; that is, the parameter values or methods with estimations inside the close interval

[minimum,minimum·(1+discretenessMargin)] are registered to be considered again, for a second chance,

in the main loop. The user can disable this interval by setting discretenessMargin = 0. In applying this

two-step approach, some time is spent in the outer—instead of in the outer—loop. Since the probability of

ties is tiny for “reasonable” sample sizes, number of runs and classification methods, this part of the code

is seldom executed.

In short, there appears to be three possible solutions to mitigate the discreteness effect:

1. Increasing the testing sample sizes.

2. Increasing the number of runs.

3. Implementing the two-step approach of sections 2.5.1 and 2.5.2.

The two first proposals are statistical and can be applied only in some situations. The third is methodological

and can be applied when the decision can be made in two steps, as it happens in our scripts for simulated

and real data.

A.1.3 Length of the Data

For longitudinal data, we can talk about the data-length effect due to the length T of the stochastic processes

or stochastic functions. Notice that this effect is different to those related to the methodology, that is, to

the possible tasks that can be done for data of a given length—see section A.1.4.

A.1.4 Methodology Effect

When a methodology is designed, its steps introduce inevitable conditions. For example, stochastic tasks—

e.g., splitting a sample—increase the variability, which can be called randomness effect.

When generating time series, the values with which the calculations are initialized may have an effect

for short series. Therefore, to avoid this effect in the functions funcAR2tv and funcARMApq series of longer

than T are generated so that to take only the last T values.

Also for times series, the length T is closely related to the quality of the periodogram as an estimator of

the spectral density function. As we state in Alonso et al. (2008): It is worth mentioning that there are two

opposite effects as a consequence of splitting: one is that the narrower the blocks are, the closer we are to

the locally stationary assumption; the other one is that when the length of the blocks decreases, the quality
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of the integrated periodogram as an estimator of the integrated spectrum also decreases. To show this effect,

we have included some additional calls in simulation exercise of section 6.1.1.

Another example: For functions, the number of points T is closely related to the quality of the derivatives

and differentials, and even some characteristics of the functions may go unnoticed for not large enough T .

Finally, it is important not to confuse the two cases just presented with that due to the training-sample-

-size reduction—see section A.1.2.

A.1.5 Averaging Effects

To understand—through the mean square error—the averaging effect of combining several classifiers, we

consider the easiest case. Let e be a new element of group ge. For independent and identically distributed

classifiers with expectation µ(e) and variance σ2(e), the sample mean has expectation µ(e) and variance

σ2(e)/B. Thus, for this particular case, if each classifier cb(e) has mean square error

MSE(cb(e)) = bias(cb(e))
2 + var(cb(e)) = [E(cb(e))− ge]2 + var(cb(e)) = [µ(e)− ge]2 + σ2(e) (40)

the sample mean has mean square error

MSE(C(e)) = bias(C(e))2 + var(C(e)) = [E(C(e))− ge]2 + var(C(e)) = [µ(e)− ge]2 +
σ2(e)

B
(41)

In this case, for the latter classifier the bias is equal while the variance is smaller. Variability by itself does

not change the mean value of a set of variables, it changes the distribution of these values around that mean.

Obviously, calculations for dependent or differently distributed classifiers cb are quite more complicated

than the previous.

On the other hand, when averaging classifiers cb can be equal but based on different samples or, alter-

natively, different but based on the same samples.

What: Error Rates or Labels

Both the estimated error rates or the estimated labels can be averaged. Error rates are averaged in the

inner loop of all scripts and in the outer loop of scripts for simulated and real data. On the contrary, labels

are averaged in the outer loop of the scripts for new data.

Where: Testing Samples or Runs

As regards the place, it is worth highlighting that in estimating the overall misclassification error rate

individual error rates are implicitly averaged when the testing samples have more than one datum—this can

be called sample-averaging effect.

Besides, if this estimation of the overall error rate is repeated and averaged, an explicit run-averaging

effect appears.

Number of Runs and Estimations

On the one hand, the number of runs, say B, should not be too small for several reasons:

• To avoid the discreteness effect described in section A.1.2, especially for small testing samples.
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• To guarantee a minimum quality of the estimated error rates and labels, since the error of an estimation

must be of smaller order of magnitude than the estimation itself. Let Q be a quantity with mean

µ = E(Q) and variance mean σ2 = V ar(Q); if its mean is being estimated through the sample mean

Q̄ = 1
B

∑B
i=1Qi, where {Qi} is a simple random sample, the standard error of the estimation is defined

as the standard deviation of the sample mean, that is,

SEE(Q) =

√
σ2

B
=

σ√
B
, (42)

which is in practice—unknown σ—approximated by

ˆSEE(Q) =
s√
B
, (43)

where s is the sample variance.

(This formula holds for independent and identically distributed classifiers, basically for procedures where

methods do not change the samples.) From this formula it is easy to see that B = 100 causes the standard

error to be one order of magnitude smaller than the estimation (error around 10% of the quantity itself),

the value B = 400 would imply the order of magnitude to be reduced in one degree and the magnitude to

be divided by 2, the value B = 10000 would imply a standard error with an order of magnitude two degrees

smaller than the estimation, et cetera.

On the other hand, the number of runs should not be too large for other reasons:

• When the same data are subsequently used, to avoid the overfitting effect described in section A.1.2.

• For computational, practical reasons.

Run-Averaging of the Labels: Majority-Vote Classifier

In a two-group problem, a classifier can be seen as a function that takes the value −1 or +1, that is,

c(e) ∈ {−1,+1}. For subsequent estimations, say B, the final unweighted majority-vote final classifier is

given by

C(e) = sign[
B∑
b=1

cb(e)]. (44)

If the B runs are independent, they can be considered simultaneous; otherwise, they are dependent. As

an example of the latter case, the boosting techniques generate and combine a sequence of classifiers—

based on dependent modifications of the samples—in a weighted summation C(e) = sign[
∑B

b=1 αbcb(e)]. As

Hastie et al. (2001) state: The motivation for boosting was a procedure that combines the outputs of many

“weak” classifiers to produce a powerful “committee”. Averaging “weak” or unstable classifiers can reduce

the variance of the final decision.

The result of expression 44 can be thought of as either the sample mean or the median of variables

taking the value −1 or +1. It is well-known the robustness of the median, while, for a variable taking the

values mentioned, the sample mean is in [−1,+1]. We have carried out a simulation exercise to calculate

the mean square error of cb and C—see section 6.1.4.
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A.2 On the Computational Time

The following time effects can be negligible when their order of magnitude is quite bigger than the order

of magnitude of the most lasting step of an algorithm, or when we shall pay attention to the averaged

computational time of many runs. Alternatively, the effects are difficult to detect for fast methods—so

happens with our algorithms WI and WD.

A.2.1 Sample-Size Time Effect

Computational time depends on the sample sizes. In general, the more data in the samples, the bigger the

necessary computational time to extract the information from them.

The, as a consequence of using fewer—but usually better—elements in the samples, there may be a

time-saving effect if the time spent calculating the depth is compensated, especially for methods that use

each datum individually during the calculations, while the quality of the classification is not affected.

A.2.2 Auxiliary-Method Effect

When a technique calls other “secondary” or auxiliary procedures, they may introduce perturbations—

auxiliary-method effects—in the computational effort of the technique itself. For example, when working

with the periodogram (it is an estimator of the power spectral density), the length T of the processes or

series is recommended to be a power of two due to the fact that in this case the Fast Fourier Transform can

be applied to calculate it—see, for example, section 6.1.3 of Priestley (1981). Hence, if the user splits the

data into blocks such that some of them verify that condition while some others do not, there will appear

an effect inherited from the way of calculating the periodogram.

A.2.3 Call-Order Effect

In any multistep procedure, some calculations can be reused when:

1. Several methods are applied to just the same data.

2. Consecutive methods have common initial steps.

With such an implementation, the order in which the methods are called may introduce a perturbance—a

call-order effect—in the computational times. We have accelerated the calculations in this way as described

in section 2.8; however, to avoid the perturbance our code registers the computational time spent by the

method that did the calculations. To take advantage of the implementation, methods should be implemented

for them to share the first steps, for example, [1 1 2 1; 1 1 3 2, 1 1 3 4].

A.2.4 Inherent Effect

The computer, the operating system and the programming language introduce inevitable perturbances—

inherent effects—in the computational times.

While preparing this package, I have met an interesting example that at the beginning I thought it was

a programming error. Concretely, the first time some code is run in a for-loop, it may last more than in

posterior times. A tricky solution consists in doing the calculations one more time than necessary; if the

user needs fast code or has no interest in the accuracy of the computational time, this trick can be removed.

See the simulation exercise in section 6.1.6 for a particular case of this beginner effect.
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A.3 Total Effect

So far we have described isolated effects. Nevertheless, they are usually involved in the total effect of a

complex process. Some individual effects are positive and some others are negative, in the sense of being

or not beneficial for the process. Although it is usually impossible to quantify the total effect in a process,

we can apply some qualitative reasoning so that to understand the whole process. For this purpose, it is

possible to relate the elements of a methodology or scheme with some of the effects, for example:

• In both the inner and the outer loops, data are split in each run. Thus, there are a negative randomness

effect, negative training- and testing-sample-size effects, a positive run-averaging effect, etc.

• When leave-one-out is applied, the reduction of the sample sizes is minimum, but so is the sample-

-averaging effect.

• Reusing or not the data in the inner loop can involve training- and testing-sample-size effects, but

also an overfitting effect.

• The depth-based robustifying technique introduces weak negative training- and testing-sample-size

effects in the inner loop and a training-sample-size effect in the outer loop, but also reduces the

training and testing strengthening and weakening effects, and implies a sample-size time effect.

• For time series, in the calculation of the periodogram there is an auxiliary-method effect and, when

many blocks are considered, also a methodology effect.

• The schemes themselves and their calls may imply a call-order effect, inherent effects, et cetera.

B Ways of Using the Data: Expanded Figures
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Figure 19: A way of using simulated data samples
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Figure 20: A way of using real data samples
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Figure 21: A way of using training samples to classify new data
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